Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(3): 69, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821008

RESUMO

Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.


Assuntos
Jejum , Mitocôndrias , Receptor 1 de Sinal de Orientação para Peroxissomos , Peixe-Zebra , Animais , Humanos , Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293111

RESUMO

Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Creatinina , Interleucina-6/metabolismo , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Antineoplásicos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281284

RESUMO

Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mortality. The major pathological alterations of DN include mesangial expansion, extracellular matrix alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and antihypertensive. However, to the best of the authors' knowledge, the effects of the ethanolic extract from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was administrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically, ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well as the inhibition of nephritis and fibrosis in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Fitoterapia , Polygonum/química , Animais , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Glucose/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Masculino , Proteínas de Membrana/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rizoma/química
4.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572597

RESUMO

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Pflugers Arch ; 472(6): 639-651, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32358781

RESUMO

The heart is involved in the regulation of blood pressure and body fluid homeostasis. As a blood volume sensor and effector for the regulation of the volume and pressure homeostasis, the atria are the central regulator to secrete humoral messenger cardiac natriuretic hormones into the circulation. The primary action of the atria in response to the volume change in the body is to control the secretion of atrial natriuretic peptide (ANP), a member of the family of cardiac natriuretic hormones. Although all cardiac chambers are able to secrete ANP, the major source of the cardiac hormone is the atria until reactivation of the synthesis of the ventricles. In heart disease including hypertension and cardiac hypertrophy, ventricular ANP synthesis and plasma levels of ANP are increased. However, the roles of the atria for the ANP secretion are not well defined in hypertension or heart failure. Under the high concentration of plasma levels of ANP by compensatory and/or pathophysiological reactivation of the ventricular synthesis and release of ANP, with activation of the renin-angiotensin system and changes in the atrial distensibility, the roles of the atria should be reevaluated in the heart disease. The purpose of the present review is to address modulation of the atrial role in the regulation of ANP secretion and its significance in the pathological changes in hypertension and cardiac disease and to strengthen the importance of the role of the interstitial fluid dynamics of the atrial wall in the regulation of ANP secretion.


Assuntos
Fator Natriurético Atrial/metabolismo , Secreções Corporais/metabolismo , Cardiomegalia/metabolismo , Átrios do Coração/metabolismo , Animais , Pressão Sanguínea/fisiologia , Ventrículos do Coração/metabolismo , Humanos
6.
J Vasc Res ; 57(6): 313-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726786

RESUMO

OBJECTIVE: Xanthotoxin (XAT) is a linear furanocoumarin mainly extracted from the plants Ammi majus L. XAT has been reported the apoptosis of tumor cells, anti-convulsant, neuroprotective effect, antioxidative activity, and vasorelaxant effects. This study aimed to investigate the vascular protective effects and underlying molecular mechanisms of XAT. METHODS: XAT's activity was studied in rat thoracic aortas, isolated with aortic rings, and human umbilical vein endothelial cells (HUVECs). RESULTS: XAT induced endothelium-dependent vasodilation in a concentration-dependent manner in the isolated rat thoracic aortas. Removal of endothelium or pretreatment of aortic rings with L-NAME, 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, and wortmannin significantly inhibited XAT-induced relaxation. In addition, treatment with thapsigargin, 2-aminoethyl diphenylborinate, Gd3+, and 4-aminopyridine markedly attenuated the XAT-induced vasorelaxation. XAT increased nitric oxide production and Akt- endothelial NOS (eNOS) phosphorylation in HUVECs. Moreover, XAT attenuated the expression of TNF-α-induced cell adhesion molecules such as intercellular adhesion molecule, vascular cell adhesion molecule-1, and E-selectin. However, this effect was attenuated by the eNOS inhibitors L-NAME and asymmetric dimethylarginine. CONCLUSIONS: This study suggests that XAT induces vasorelaxation through the Akt-eNOS-cGMP pathway by activating the KV channel and inhibiting the L-type Ca2+ channel. Furthermore, XAT exerts an inhibitory effect on vascular inflammation, which is correlated with the observed vascular protective effects.


Assuntos
Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Metoxaleno/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta Torácica/metabolismo , Canais de Cálcio Tipo L/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
7.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977573

RESUMO

Abnormal and excessive growth of mesangial cells is important in the pathophysiologic processes of diabetes-associated interstitial fibrosis and glomerulosclerosis, leading to diabetic nephropathy, which eventually turns into end-stage renal disease. Sauchinone, a biologically-active lignan isolated from aerial parts of Saururus chinensis, has anti-inflammatory and anti-viral activities effects on various cell types. However, there are no studies reporting the effects of sauchinone on diabetic nephropathy. The present study aims to investigate the role of sauchinone in mesangial cell proliferation and fibrosis induced by angiotensin II, as well as the underlying mechanisms of these processes. Human renal mesangial cells were induced by angiotensin II (AngII, 10 µM) in the presence or absence of sauchinone (0.1-1 µM) and incubated for 48 h. In this study, we found that AngII induced mesangial cell proliferation, while treatment with sauchinone inhibited the cell proliferation in a dose-dependent manner. Pre-treatment with sauchinone induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21, and p27kip1 expression. In addition, AngII-enhanced expression of fibrosis biomarkers such as fibronectin, collagen IV, and connective tissue growth factor (CTGF), which was markedly attenuated by sauchinone. Sauchinone also decreased AngII-induced TGF-ß1 and Smad-2, Smad-3, and Smad-4 expression. This study further revealed that sauchinone ameliorated AngII-induced mesangial inflammation through disturbing activation of inflammatory factors, and NLRP3 inflammasome, which is composed of the NLRP3 protein, procaspase-1, and apoptosis-associated speck-like protein containing a CARD (ASC). Moreover, pretreatment of sauchinone inhibited NF-κB translocation and ROS production in AngII-exposed mesangial cells. These data suggest that sauchinone has a protective effect on renal proliferation, fibrosis and inflammation. Therefore, sauchinone might be a potential pharmacological agent in prevention of AngII-induced renal damage leading to diabetic nephropathy.


Assuntos
Benzopiranos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Dioxóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Mesangiais/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Linhagem Celular , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Células Mesangiais/patologia
8.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650596

RESUMO

Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen flavonoid or xanthone compounds from C. tricuspidata could induce HO-1 expression in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. In these compounds, kuwanon C showed the most remarkable HO-1 expression effects. In addition, treatment with kuwanon C reduced cytoplasmic nuclear erythroid 2-related factor (Nrf2) expression and increased Nrf2 expression in the nucleus. Significant inhibition of glutamate-induced oxidative injury and induction of reactive oxygen species (ROS) occurred when HT22 hippocampal cells were pretreated with kuwanon C. The levels of inflammatory mediator and cytokine, which increased following lipopolysaccharide (LPS) stimulation, were suppressed in RAW264.7 macrophage and BV2 microglia after kuwanon C pretreatment. Kuwanon C also attenuated p65 DNA binding and translocation into the nucleus in LPS-induced RAW264.7 and BV2 cells. The anti-inflammatory, anti-neuroinflammatory, and neuroprotective effects of kuwanon C were reversed when co-treatment with HO-1 inhibitor of tin protoporphyrin-IX (SnPP). These results suggest that the neuroprotective and anti-inflammatory effects of kuwanon C are regulated by HO-1 expression.


Assuntos
Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Moraceae/química , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Flavonoides/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Xantonas/farmacologia
9.
Molecules ; 26(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374365

RESUMO

Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1-1 µM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (ß-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Fator de Transcrição GATA4/metabolismo , Fatores de Transcrição NFATC/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Cardiotônicos/uso terapêutico , Linhagem Celular , Doxorrubicina/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Triterpenos Pentacíclicos/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ácido Betulínico
10.
Immunopharmacol Immunotoxicol ; 41(2): 337-348, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31056974

RESUMO

Objective: The isochroman-type fungal metabolite 3,7-dimethyl-1,8-hydroxy-6-methoxyisochroman (DMHM) was isolated from the extracts of a marine-derived fungal strain of Penicillium sp. SF-6013. In this study, we investigated the effect of DMHM on inflammatory response. Materials and methods: Anti-inflammatory effects of DMHM were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 and BV2 cells. We observed their anti-inflammatory effects by ELISA, qRT-PCR, and western blot analysis. Results: DMHM revealed that it suppressed the production of prostaglandin E2 (PGE2), nitric oxide (NO), cyclooxygenase-2 (COX-2), and inducible NO synthase (iNOS) in LPS-stimulated RAW264.7 and BV2 cells. Furthermore, DMHM decreased the mRNA expression of pro-inflammatory cytokines including interleukin (IL)-1ß and IL-6. Therefore, DMHM was further investigated to elucidate the mechanisms of its anti-inflammatory properties; the results indicated that its effect was mediated by the suppression of the nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK) MAPK pathways. Furthermore, the anti-inflammatory activity of DMHM correlated with its induction of heme oxygenase-1 (HO)-1 expression via activation of the nuclear factor erythroid 2-like 2 (Nrf2) pathway. Discussion and conclusions: Collectively, the results of this study suggest that DMHM inhibited several inflammatory pathways including the NF-κB and MAPK pathways, and induced Nrf2-mediated HO-1 expression, demonstrating its potential usefulness for treating inflammatory and neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Cromanos/farmacologia , Heme Oxigenase-1/imunologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Animais , Anti-Inflamatórios/química , Cromanos/química , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Óxido Nítrico/imunologia , Penicillium/química , Células RAW 264.7
11.
J Physiol ; 601(7): 1309, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893314
12.
Am J Physiol Heart Circ Physiol ; 315(3): H590-H601, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979625

RESUMO

In the present study, the change in secretion of atrial natriuretic peptide (ANP) from the atria was defined in hypertension accompanied by ventricular hypertrophy and increased synthesis of ANP. To identify the change of the secretion and mechanisms involved, experiments were performed in isolated perfused beating atria from sham-operated normotensive and renovascular hypertensive rats. Expression of ANP, natriuretic peptide receptor (NPR)-C, components of the renin-angiotensin system, and muscarinic signaling pathway was measured in cardiac tissues. Basal levels of ANP secretion and acetylcholine (ACh)- and stretch-induced activation of ANP secretion were suppressed in the atria from hypertensive compared with normotensive rats. ACh increased ANP secretion via M2 muscarinic ACh receptor-ACh-sensitive K+ channel signaling. In hypertensive rats, ANP concentration increased in the left ventricle but decreased in the right ventricle. The atrial concentration of ANP was not changed in hypertensive compared with normotensive rats. ANP mRNA expression was accentuated in the left ventricle but suppressed in the other cardiac chambers in the hearts of hypertensive rats. NPR-C expression was inversely related to ANP mRNA levels. Angiotensin II type 1 receptor (AT1R) expression was accentuated in the cardiac chambers from hypertensive rats compared with normotensive rats, whereas angiotensin II type 2 receptor, M2 muscarinic receptor, and Kir3.4 channels were suppressed. AT1R blockade with losartan reversed the change observed in hypertensive rats. The present findings indicate that renovascular hypertension shifts the major site of ANP secretion and synthesis from the atria to the left ventricle through modulation of the expression of ANP, NPR-C, AT1R, and the M2 muscarinic signaling pathway. NEW & NOTEWORTHY Renovascular hypertension suppresses the atrial secretion of ANP and shifts the major site of the regulation of ANP secretion and synthesis from atria to the hypertrophied left ventricle possibly via modulation of the expression of ANP, natriuretic peptide receptor-C, angiotensin II subtype 1 receptor, and M2 muscarinic signaling pathway.


Assuntos
Fator Natriurético Atrial/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão Renovascular/metabolismo , Animais , Fator Natriurético Atrial/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
13.
Int J Mol Sci ; 18(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335557

RESUMO

Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-ß-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3ß). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3ß. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3ß induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3ß inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/deficiência , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Metformina/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Korean J Physiol Pharmacol ; 21(5): 519-529, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28883756

RESUMO

Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of 1,000 µM. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and IL-1ß, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of TNF-α, IL-6, and IL-1ß. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.

15.
BMC Complement Altern Med ; 16: 98, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961224

RESUMO

BACKGROUND: Metabolic syndrome such as dyslipidemia, hypertension, obesity, impaired glucose tolerance and fatty liver, can be caused by modification of diet by means of overconsumption of high fructose diet. This study was designed to investigate whether combination with Red ginseng and Polygoni Multiflori Radix (RGPM), widely used traditional herbal medicine, ameliorates on highfructose (HF) diet-induced metabolic syndrome. METHODS: SD rats were fed the 60% HF diet with/without rosiglitazone, and RGPM 100, 300 mg/kg/day, respectively. All groups received regular diet or HF diet, respectively, for 8 weeks. The last three groups treatment of rosiglitazone and RPGM orally for a period of 6 weeks. RESULTS: Chronic treatment with RGPM significantly decreased body weight, fat weight and adipocyte size. RGPM significantly prevented the development of the metabolic disturbances such as hypertension, hyperlipidemia and impaired glucose tolerance. RGPM also led to increase in high density lipoprotein level in the HF group. RGPM suppressed high-fructose diet induced vascular inflammation marker expression such as adhesion molecules and ET-1 in aorta as well as increasing of C-reactive protein (CRP) levels in plasma. Similarly, RGPM attenuated hepatic lipid accumulation by inhibition of monocyte chemoattractant protein-1 (MCP-1) expression. CONCLUSION: An administration of RGPM may be a beneficial therapy for the treatment of metabolic syndrome through the improvement of hypertension, obesity, hyperlipidemia, vascular inflammation and insulin resistance.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Frutose/administração & dosagem , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Panax , Fitoterapia , Polygonum , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Pressão Sanguínea , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proteína C-Reativa/metabolismo , Quimiocina CCL2/sangue , Dieta/efeitos adversos , Quimioterapia Combinada , Medicamentos de Ervas Chinesas/farmacologia , Frutose/efeitos adversos , Mediadores da Inflamação/metabolismo , Lipoproteínas HDL/sangue , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Ratos Sprague-Dawley
16.
Molecules ; 21(9)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27649130

RESUMO

Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1ß, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation.


Assuntos
Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/metabolismo , Moraceae/química , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Xantonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Xantonas/química , Xantonas/isolamento & purificação
17.
J Phys Ther Sci ; 28(8): 2400-3, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27630443

RESUMO

[Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ± 1.3 years; weight: 67.6 ± 4.92 kg; height: 176.4 ± 4.92 cm). All subjects performed 5 min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15 min, with electromyography monitoring (treatment group). After sufficient rest, the exercise was repeated for 5 min and an electromyography signal was acquired for 15 min with no treatment (control group). [Results] In the treatment group, the median frequency shifted to a higher level; the root mean square decreased over time, and then maintained a minimum amplitude. However, there were few changes in the electromyography signal after exercise in the control group. [Conclusion] Electromyography signals can provide information about the effective duration for muscle fatigue treatment as well as the muscle characteristics during treatment. This study should be helpful for clinicians by demonstrating the appropriate duration of therapy for relief of muscle stiffness.

18.
BMC Complement Altern Med ; 15: 30, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25880429

RESUMO

BACKGROUND: The pathological change of kidney in diabetic nephropathy is represented hypertrophy, inflammation, and renal fibrosis. Oryeongsan, traditional oriental herbal formula, is widely used for the treatment of nephrosis, dropsy, and uremia. This study was examined whether Oryeongsan attenuate high-glucose (HG)-promoted rat mesangial cell fibrosis and matrix accumulation, major features of diabetic glomerulosclerosis. METHODS: Oryeongsan was mixed traditional herbal medicine, Alisma orientale Juz, Polyporus umbellatus Fries, Atractylodes macrocephala Koidez, Poria cocos Wolf and Cinnamomum Cassia Presl (5:3:3:1). Renoprotective role in diabetic nephropathy of Oryeongsan was evaluated by [(3)H]-thymidine incorporation, Western blot, RT-qPCR and immunofluorescence microscopy assay. RESULTS: Rat mesangial cell proliferation induced by HG was significantly accelerated, which was inhibited by Oryeongsan in a dose dependent manner. HG enhanced expression of fibrosis biomarkers such as collagen IV and connective tissue growth factor (CTGF), which was markedly attenuated by Oryeongsan. Oryeongsan increased HG-inhibited membrane type-1 matrix metalloproteinase expression (MT1-MMP) and MMP-2 promotor activity, whereas suppressed HG-induced tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression. Moreover, Oryeongsan promoted extracellular matrix degradation through disturbing transforming growth factor ß (TGF-ß)-Smad signaling. This study further revealed that Oryeongsan ameliorated HG-induced mesangial inflammation accompanying induction of intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). Moreover, pretreatment of Oryeongsan inhibited NF-κB translocation in HG-exposed mesangial cell. CONCLUSION: These results demonstrate that Oryeongsan has protective effect against renal proliferation, fibrosis, and inflammation. Therefore Oryeongsan may be specific therapies targeting renal dysfunction leading to diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Mesângio Glomerular/efeitos dos fármacos , Glucose/efeitos adversos , Magnoliopsida , Células Mesangiais/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Polyporaceae , Animais , Quimiocina CCL2/metabolismo , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Fibrose , Mesângio Glomerular/patologia , Glucose/administração & dosagem , Glucose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Células Mesangiais/patologia , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Molecules ; 20(6): 11173-83, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26091075

RESUMO

A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1-9 and flavonoids 10-16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1-9 and 13-16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9-13.6 µM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.


Assuntos
Moraceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Catálise/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Concentração Inibidora 50
20.
BMC Complement Altern Med ; 14: 453, 2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25416139

RESUMO

BACKGROUND: Gal-geun-dang-gwi-tang (GGDGT), an herbal medicine, is used to treat hypertension, stroke, and other inflammatory disorders in the clinical setting. Recently, GGDGT was recognized by the Korea Institute of Oriental Medicine. This study aimed to evaluate the effects of GGDGT in a diabetic atherosclerosis model using apolipoprotein E knockout (ApoE-/-) mice fed a Western diet. METHODS: The mice were divided into four groups: control group, C57BL6J mice receiving a regular diet (RD); ApoE-/- group, ApoE-/- mice receiving a Western diet (WD); rosiglitazone group, ApoE-/- mice receiving rosiglitazone (WD + 10 mg · kg(-1) · day(-1)); GGDGT group, ApoE-/- mice receiving GGDGT (WD + 200 mg · kg(-1) · day(-1)). RESULTS: Treatment with GGDGT significantly improved glucose tolerance and plasma lipid levels. In addition, GGDGT ameliorated acetylcholine-induced vascular relaxation of the aortic rings. Immunohistochemical staining showed that GGDGT suppressed intercellular adhesion molecule (ICAM)-1 expression; however, expression of endothelial nitric oxide synthase (eNOS) and insulin receptor substrate (IRS)-1 were restored in the thoracic aorta and skeletal muscle, respectively. CONCLUSIONS: These findings suggest that GGDGT attenuates endothelial dysfunction via improvement of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway and improves insulin sensitivity in diabetic atherosclerosis.


Assuntos
Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Dieta Ocidental , Endotélio Vascular/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Aorta Torácica , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Glicemia/metabolismo , GMP Cíclico/metabolismo , Angiopatias Diabéticas/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Lipídeos/sangue , Masculino , Medicina Tradicional Coreana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Extratos Vegetais/farmacologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA