Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Chemistry ; 21(3): 1125-9, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25404494

RESUMO

Unusual CO2 storage in water-saturated MOFs was investigated by combining experiment and simulation. It was found that the micropores of HKUST-1 saturated with water provide an environment that is thermodynamically and kinetically favorable for CO2 capture, but not for N2 and H2 capture. We expect that this phenomenon have potential to be used for successful separation of CO2 from versatile flue streams and pre-combustion gas.

2.
Chemphyschem ; 16(13): 2876-2881, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26239264

RESUMO

In this study, we investigate the crystal structures and phase equilibria of butanols+CH4 +H2 O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X-ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen-bonding interactions between the hydroxy group of the guests and the water-host framework. However, Raman spectra of the binary (1-butanol+CH4 ) hydrate do not show the free OH signal, indicating that there could be possible hydrogen-bonding interactions between the guests and hosts. We also measure the four-phase equilibrium conditions of the butanols+CH4 +H2 O systems.

3.
Environ Sci Technol ; 49(3): 1964-71, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25565018

RESUMO

In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.


Assuntos
Dióxido de Carbono/química , Metano/química , Nitrogênio/química , Cinética , Espectroscopia de Ressonância Magnética , Sílica Gel/química , Água/química
4.
Phys Chem Chem Phys ; 17(3): 1949-56, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475482

RESUMO

The structures and the guest-host distributions of iso-propylamine (i-PA) and n-propylamine (n-PA) hydrates with hydrogen as a secondary guest were identified by powder X-ray diffraction and Raman spectroscopic analysis. The structure of 11.1 mol% i-PA + H2 hydrate was identified to be hexagonal (space group P63/mmc) with a few unindexed diffraction peaks, while 5.6 mol% i-PA + H2 hydrate had a cubic structure (space group Fd3¯m). Similarly, the structure of 13.3 mol% n-PA + H2 hydrate was found to be monoclinic (space group P2(1)/n), while 5.6 mol% n-PA + H2 hydrate had a cubic structure (space group Fd3¯m). The 'tuning' phenomenon, multiple occupancy of hydrogen in the large cage at the pressure and temperature regions outside of pure hydrogen hydrate stability, was observed in the i-PA + H2 hydrate only when the amine concentration was lower than the stoichiometric value of structure II hydrate. The three-phase (H-L(w)-V) equilibria for alkylamine + H2 + water mixtures were also measured to investigate their thermodynamic stability.

5.
Phys Chem Chem Phys ; 16(41): 22717-22, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25232710

RESUMO

Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

6.
Environ Sci Technol ; 47(22): 13184-90, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24175633

RESUMO

The methane (CH4) - carbon dioxide (CO2) swapping phenomenon in naturally occurring gas hydrates is regarded as an attractive method of CO2 sequestration and CH4 recovery. In this study, a high pressure microdifferential scanning calorimeter (HP µ-DSC) was used to monitor and quantify the CH4 - CO2 replacement in the gas hydrate structure. The HP µ-DSC provided reliable measurements of the hydrate dissociation equilibrium and hydrate heat of dissociation for the pure and mixed gas hydrates. The hydrate dissociation equilibrium data obtained from the endothermic thermograms of the replaced gas hydrates indicate that at least 60% of CH4 is recoverable after reaction with CO2, which is consistent with the result obtained via direct dissociation of the replaced gas hydrates. The heat of dissociation values of the CH4 + CO2 hydrates were between that of the pure CH4 hydrate and that of the pure CO2 hydrate, and the values increased as the CO2 compositions in the hydrate phase increased. By monitoring the heat flows from the HP µ-DSC, it was found that the noticeable dissociation or formation of a gas hydrate was not detected during the CH4 - CO2 replacement process, which indicates that a substantial portion of CH4 hydrate does not dissociate into liquid water or ice and then forms the CH4 + CO2 hydrate. This study provides the first experimental evidence using a DSC to reveal that the conversion of the CH4 hydrate to the CH4 + CO2 hydrate occurs without significant hydrate dissociation.


Assuntos
Varredura Diferencial de Calorimetria/instrumentação , Dióxido de Carbono/análise , Metano/análise , Gás Natural/análise , Água/química , Temperatura Alta , Pressão , Reprodutibilidade dos Testes
7.
J Am Chem Soc ; 134(12): 5560-2, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22424121

RESUMO

Atomic hydrogen has received recent attention because of its potential role in energy devices, silicon devices, artificial photosynthesis, hydrogen storage, and so forth. Here, we propose a highly efficient route for producing atomic hydrogen using semi-clathrate hydrates. Two major hydrogen radical sources, derived from guest/host materials, are closely examined.

8.
J Am Chem Soc ; 133(50): 20399-404, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22060726

RESUMO

Clathrate hydrates are a highly prospective material in energy and environmental fields, but the inherent nature of inclusion phenomena occurring in the stacked water cages has not been completely resolved yet. Investigating the magnetism of guest molecules is a new experimental approach in clathrate hydrate research to open the possibility of icy magnetic applications as a novel material as well as to understand the unrevealed host-guest interactions in icy inclusion compounds. In this study, we observed an indirect spin coupling between encaged dioxygen molecules via a nonmagnetic water framework through the measurement of guest magnetization. This spin coupling is reminiscent of superexchange coupling between magnetic ions through intervening oxygens in antiferromagnetic oxides, such as MnO and CoO. Theoretical calculations revealed that OH(-) incorporated in the framework induced the mixing of perpendicular π* orbitals of two distant dioxygens and that ammonia doping into the hydrate cage leads to a longer lifetime of that orientation.

9.
Langmuir ; 27(17): 10597-603, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21749094

RESUMO

In this study, guest gas enclathration behavior in semiclathrates of tetra-n-butylammonium bromide (TBAB) was closely investigated through phase equilibrium measurement and spectroscopic analysis. The three-phase equilibria of semiclathrate (H), liquid water (L(W)), and vapor (V) for the ternary CH(4) + TBAB + water and CO(2) + TBAB + water mixtures with various TBAB concentrations were experimentally measured to determine the stability conditions of the double TBAB semiclathrates. Equilibrium dissociation temperatures for pure TBAB semiclathrate were also measured at the same concentrations under atmospheric conditions. The dissociation temperature and dissociation enthalpy of pure TBAB semiclathrate were confirmed by differential scanning calorimetry. The experimental results showed that the double CH(4) (or CO(2)) + TBAB semiclathrates yielded greatly enhanced thermal stability when compared with pure CH(4) (or CO(2)) hydrate. The highest stabilization effect was observed at the stoichiometric concentration of pure TBAB semiclathrate, which is 3.7 mol%. From the NMR and Raman spectroscopic studies, it was found that the guest gases (CH(4) and CO(2)) were enclathrated in the double semiclathrates. In particular, from the cage-dependent (13)C NMR chemical shift, it was confirmed that CH(4) molecules were captured in the 5(12) cages of the double semiclathrates.


Assuntos
Dióxido de Carbono/química , Metano/química , Compostos de Amônio Quaternário/química , Varredura Diferencial de Calorimetria , Modelos Moleculares , Temperatura , Água/química
10.
Nature ; 434(7034): 743-6, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15815624

RESUMO

The storage of large quantities of hydrogen at safe pressures is a key factor in establishing a hydrogen-based economy. Previous strategies--where hydrogen has been bound chemically, adsorbed in materials with permanent void space or stored in hybrid materials that combine these elements--have problems arising from either technical considerations or materials cost. A recently reported clathrate hydrate of hydrogen exhibiting two different-sized cages does seem to meet the necessary storage requirements; however, the extreme pressures (approximately 2 kbar) required to produce the material make it impractical. The synthesis pressure can be decreased by filling the larger cavity with tetrahydrofuran (THF) to stabilize the material, but the potential storage capacity of the material is compromised with this approach. Here we report that hydrogen storage capacities in THF-containing binary-clathrate hydrates can be increased to approximately 4 wt% at modest pressures by tuning their composition to allow the hydrogen guests to enter both the larger and the smaller cages, while retaining low-pressure stability. The tuning mechanism is quite general and convenient, using water-soluble hydrate promoters and various small gaseous guests.

11.
J Am Chem Soc ; 132(11): 3694-6, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20192185

RESUMO

In the present work, we first described the stable entrapment of the superoxide ions in gamma-irradiated (Me(4)NOH + O(2)) clathrate hydrate. Owing to peculiar direct guest-guest ionic interaction, the lattice structure of gamma-irradiated (Me(4)NOH + O(2)) clathrate hydrate shows significant change of lattice contraction behavior even at relatively high temperature (120 K). Such findings are expected to provide useful information for a better understanding of unrevealed nature (such as icy nanoreactor concept, ice-based functional material synthesis and lattice tuning by specific ionic guests) of clathrate hydrate fields.

12.
J Am Chem Soc ; 131(16): 5736-7, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19338302

RESUMO

Magnetic molecules physisorbed into low-dimensional nanostructures of microporous materials such as graphite and metal-organic frameworks have been verified to exhibit an unusual magnetic behavior. We demonstrate that the selective injection of both magnetic and nonmagnetic guest molecules into the water-ice cages of clathrate hydrates to form a 3D superstructure with tetrahedral and diamond-like sublattices can modify the inherent magnetism.

13.
J Phys Chem B ; 113(31): 10562-5, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19603822

RESUMO

In this study, we identify the crystal structures of amyl alcohol + CH(4) hydrates and demonstrate that the free OH observation of alcohol hydrates provides evidence of OH incorporation into the host framework occurring in some amyl alcohols. While two amyl alcohols, 3-methyl-2-butanol and 2-methyl-2-butanol, were identified as encaged in the 5(12)6(8) large cage of structure-H hydrate, as expected from their molecular sizes above 7.5 A, two other amyl alcohols, 3-methyl-1-butanol and 2,2-dimethyl-1-propanol, were identified to be abnormally included in the 5(12)6(4) large cage of structure-II hydrate in spite of their too large sizes of 9.04 and 7.76 A, respectively. The Raman spectra of two "normal" amyl alcohol hydrates evolved free OH peaks around 3,600 cm(-1), implying that there is no strong hydrogen bonding interaction between alcohol guest and water host; however, for two "abnormal" amyl alcohol hydrates, the corresponding peaks were not detected, which indicates that the OH is incorporated into the host lattice in order to make the large alcohol guest fit into the relatively small 5(12)6(4) cage of structure-II. The present findings are expected to provide useful information for a better understanding of alcohol guest dynamic behavior that might be significantly affected by structural dimensions and host-guest interactions.

14.
J Phys Chem B ; 113(16): 5487-92, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19334731

RESUMO

In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.


Assuntos
Etano/química , Modelos Químicos , Propano/química , Dióxido de Silício/química , Termodinâmica , Água/química , Géis/química , Transição de Fase , Porosidade , Propriedades de Superfície , Temperatura
15.
J Phys Chem B ; 113(5): 1245-8, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19133761

RESUMO

Natural methane hydrates occurring in marine clay sediments exhibit heterogeneous phase behavior with high complexity, particularly in the negatively charged interlayer region. To date, the real clay interlayer effect on natural methane hydrate formation and stability remains still much unanswered, even though a few computer simulation and model studies are reported. We first examined the chemical shift difference of 27Al, 29Si, and 23Na between dry clay and clay containing intercalated methane hydrates (MH) in the interlayer. We also measured the solid-state 13C MAS NMR spectra of MH in Na-montmorillonite (MMT) and Ca-montmorillonite (MMT) to reveal abnormal methane popularity established in the course of intercalation and further performed cryo-TEM and XRD analyses to identify the morphology and layered structure of the intercalated methane hydrate. The present findings strongly suggest that the real methane amount contained in natural MH deposits should be reevaluated under consideration of the compositional, structural, and physical characteristics of clay-rich sediments. Furthermore, the intercalated methane hydrate structure should be seriously considered for developing the in situ production technologies of the deep-ocean methane hydrate.

16.
J Phys Chem A ; 113(23): 6415-8, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19445522

RESUMO

In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.

17.
J Am Chem Soc ; 130(23): 7180-1, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18479098

RESUMO

The present findings on the co-host role in restructuring the host water framework might provide important information on tuning the cage dimensions via lattice distortion and promoting the total number of cages via structural transformation. This co-host-induced structural modification can improve the physicochemical properties of ionized clathrate hydrates, particularly given that the host framework is able to function as a pathway to deliver protons or electrons.


Assuntos
Amônia/química , Compostos de Amônio Quaternário/química , Água/química , Íons , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares
18.
J Am Chem Soc ; 130(51): 17234-5, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19049277

RESUMO

In this communication, the charge transfer phenomenon from ionic host lattice to nonionic guest molecule was observed by magnetization and Raman spectroscopy measurements for nonionic and ionic clathrate hydrates. The present findings on the magnetic property of nonionic guest molecules in ionic hydrate might provide important information on the unrevealed nature of host-guest interaction in ionic hydrate systems. The charge transfer occurring between ionic host and nonionic guest molecules will open up interesting application fields for ionized hydrate complexes and activated secondary guest molecules.


Assuntos
Íons , Oxigênio/química , Físico-Química/métodos , Hidrogênio/química , Magnetismo , Conformação Molecular , Estrutura Molecular , Nitrogênio/química , Prótons , Análise Espectral Raman/métodos , Temperatura
19.
J Am Chem Soc ; 130(29): 9208-9, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18578530

RESUMO

A hydrogen molecule entrapped in the cages of icy hydrogen hydrate is confined in host water framework and thus behaves unlike pure solid or liquid hydrogen. The gamma-irradiated hydrogen radicals are for the first time observed from ESR and solid-state MAS 1H NMR spectra to stably exist in the icy hydrate channels without any collapse of the host framework, confirming the chemical shift consistency of ionized hydrogen derivatives. We discuss the confined icy hydrate channels, which can act as potential storage sites for simultaneously imprisoning both molecular and ionized hydrogen and further as icy nanoreactors.


Assuntos
Hidrogênio/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Gelo , Espectroscopia de Ressonância Magnética , Modelos Moleculares
20.
J Phys Chem B ; 112(23): 6897-9, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18489143

RESUMO

The guest dynamics and thermal behavior occurring in the cages of clathrate hydrates appear to be too complex to be clearly understood through various structural and spectroscopic approaches, even for the well-known structures of sI, sII, and sH. Neutron diffraction studies have recently been carried out to clarify the special role of guests in expanding the host water lattices and have contributed to revealing the influence factors on thermal expansivity. Through this letter we attempt to address three noteworthy features occurring in guest inclusion: (1) the effect of guest dimension on host water lattice expansion; (2) the effect of thermal history on host water lattice expansion; and (3) the effect of coherent/incoherent scattering cross sections on guest thermal patterns. The diatomic guests of H 2, D 2, N 2, and O 2 have been selected for study, and their size and mass dependence on the degree of lattice expansion have been examined, and four sII clathrate hydrates with tetrahydrofuran (THF) have been synthesized in order to determine their neutron powder diffraction patterns. After thermal cycling, the THF + H 2 clathrate hydrate is observed to exhibit an irreversible plastic deformation-like pattern, implying that the expanded lattices fail to recover the original state by contraction. The host-water cage dimension after degassing the guest molecules remains as it was expanded, and thus host-guest as well as guest-guest interactions will be altered if guest uptake reoccurs.


Assuntos
Furanos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA