Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1310: 509-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834448

RESUMO

Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.


Assuntos
Metabolômica , Pesquisa Translacional Biomédica , Espectrometria de Massas , Metaboloma , Fenótipo
2.
Int J Chron Obstruct Pulmon Dis ; 17: 2343-2353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172036

RESUMO

Purpose: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease presenting as multiple phenotypes, such as declining lung function, emphysema, or persistent airflow limitation caused by several risk factors, including cigarette smoking and air pollution. The inherent complexity of COPD phenotypes propounds difficulties for accurate diagnosis and prognosis. Although metabolomic profiles on COPD have been reported, the role of metabolism in COPD-related phenotypes is yet to be determined. In this study, we investigated the association between plasma sphingolipids and amino acids, and between COPD and COPD-related phenotypes in a Korean cohort. Patients and Methods: Blood samples were collected from 120 patients with COPD and 80 control participants who underwent spirometry and quantitative computed tomography. The plasma metabolic profiling was carried out using LC-MS/MS analysis. Results: Among the evaluated plasma sphingolipids, an increase in the metabolism of two specific sphingomyelins, SM (d18:1/24:0) and SM (d18:1/24:1) were significantly associated with COPD. There was no significant correlation between any of the SMs and the emphysema index, FVC and FEV1 in the COPD cohort. Meanwhile, Cer (d18:1/18:0) and Cer (d18:1/24:1) were significantly associated with reduced FEV1. Furthermore, the levels of several amino acids were altered in the COPD group compared to that in the non-COPD group; glutamate and alpha AAA were substantial associated with emphysema in COPD. Kynurenine was the only amino acid significantly associated with reduced FEV1 in COPD. In contrast, there was no correlation between FVC and the elevated metabolites. Conclusion: Our results provide dysregulated plasma metabolites impacting COPD phenotypes, although more studies are needed to explore the underlying mechanism related to COPD pathogenesis.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Cromatografia Líquida , Volume Expiratório Forçado , Glutamatos , Humanos , Cinurenina , Esfingolipídeos , Esfingomielinas , Espectrometria de Massas em Tandem
3.
Metabolites ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922080

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by excessive collagen matrix deposition and extracellular remodeling. Signaling pathways mediated by fibrotic cytokine transforming growth factor ß1 (TGF-ß1) make important contributions to pulmonary fibrosis, but it remains unclear how TGF-ß1 alters metabolism and modulates the activation and differentiation of pulmonary fibroblasts. We found that TGF-ß1 lowers NADH and NADH/NAD levels, possibly due to changes in the TCA cycle, resulting in reductions in the ATP level and oxidative phosphorylation in pulmonary fibroblasts. In addition, we showed that butyrate (C4), a short chain fatty acid (SCFA), exhibits potent antifibrotic activity by inhibiting expression of fibrosis markers. Butyrate treatment inhibited mitochondrial elongation in TGF-ß1-treated lung fibroblasts and increased the mitochondrial membrane potential (MMP). Consistent with the mitochondrial observations, butyrate significantly increased ADP, ATP, NADH, and NADH/NAD levels in TGF-ß1-treated pulmonary fibroblasts. Collectively, our findings indicate that TGF-ß1 induces changes in mitochondrial dynamics and energy metabolism during myofibroblast differentiation, and that these changes can be modulated by butyrate, which enhances mitochondrial function.

4.
Metabolites ; 9(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466271

RESUMO

Short chain fatty acids (SCFAs) are the main products of dietary fibers that are not digested by the human body, and they have been shown to affect human metabolism and inflammation. The amount of SCFAs in the body is related to many human diseases, and studies have focused on elucidating their roles and target molecules in both metabolic and immune responses. Thus, the quantitation of SCFAs in biological samples becomes crucial in understanding their important roles in the human body. Herein, a facile profiling method of SCFAs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and then applied to biological samples. C2-C6 SCFAs were derivatized while using 4-acetamido-7-mercapto-2,1,3-benzoxadiazole for 5 min. at room temperature prior to LC-MS/MS analysis, and characteristic fragmentation patterns and increased hydrophobicity after chemical derivatization enabled specific discrimination among 12 SCFAs. Derivatization was fast and reliable, and the reaction products were stable for a week at 4 °C. The developed method was applied to measure SCFAs in mouse feces, plasma, and human exhaled breath condensates. This fast and simple method can save labor and effort to profile SCFAs from various biological samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA