Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chembiochem ; 24(11): e202200700, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36922352

RESUMO

Horseradish peroxidase (HRP) is a pivotal biocatalyst for biosensor development and fine chemical synthesis. HRP proteins are mostly extracted and purified from the roots of horseradish because the solubility and productivity of recombinant HRP in bacteria are significantly low. In this study, we investigate the reconstitution system of split HRP fragments to improve its soluble expression levels in E. coli allowing the cost-effective production of bioactive HRPs. To promote the effective association between two HRP fragments (HRPn and HRPc), we exploit SpyTag-SpyCatcher chemistry, a versatile protein coupling method with high affinity and selectivity. Each HRP fragment was genetically fused with SpyTag and SpyCatcher, respectively, exhibiting soluble expression in the E. coli cytoplasm. The engineered split HRPs were effectively and irreversibly reconstituted into a biologically active and stable assembly that can catalyze intrinsic enzymatic reactions. Compared to the chaperone co-expression system, our approach shows that the production yield of soluble HRP is comparable, but the purity of the final product is relatively high. Therefore, our results can be applied to the high-yield production of recombinant HRP variants and other difficult-to-express proteins in bacteria without complex downstream processes.


Assuntos
Escherichia coli , Peroxidase do Rábano Silvestre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(27): 7111-7116, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915039

RESUMO

Mutations in the human LARGE gene result in severe intellectual disability and muscular dystrophy. How LARGE mutation leads to intellectual disability, however, is unclear. In our proteomic study, LARGE was found to be a component of the AMPA-type glutamate receptor (AMPA-R) protein complex, a main player for learning and memory in the brain. Here, our functional study of LARGE showed that LARGE at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to down-regulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired contextual fear memory. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for hippocampus-dependent memory in the brain. Our study thus provides insights into the pathophysiology underlying cognitive deficits in brain disorders associated with intellectual disability.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Receptores de AMPA/metabolismo , Animais , Hipocampo/citologia , Humanos , Camundongos , N-Acetilglucosaminiltransferases/genética , Transporte Proteico/fisiologia , Receptores de AMPA/genética
3.
Biotechnol Bioeng ; 117(6): 1904-1908, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32068245

RESUMO

Complement component 3a (C3a) plays a crucial role in the immune response and host defense, but it is also involved in pro-inflammatory responses, causing many inflammatory disorders. Blockade of C3a has been regarded as a potent therapeutic strategy for inflammatory diseases. Here, we present the development of a human C3a (hC3a)-specific protein binder, which effectively inhibits pro-inflammatory responses. The protein binder, which is composed of leucine-rich repeat modules, was selected against hC3a through phage display, and its binding affinity was matured up to 600 pM by further expanding the binding interface in a module-by-module manner. The developed protein binder was shown to have more than 10-fold higher specificity to hC3a compared with human C5a, exhibiting a remarkable suppression effect on pro-inflammatory response in monocyte, by blocking the interaction between hC3a and its receptor. The hC3a-specific protein binder is likely to have a therapeutic potential for C3a-mediated inflammatory diseases.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Complemento C3a/antagonistas & inibidores , Inflamação/tratamento farmacológico , Leucina/análogos & derivados , Leucina/farmacologia , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Complemento C3a/imunologia , Humanos , Inflamação/imunologia , Modelos Moleculares
4.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817005

RESUMO

Attention capability is an essential component of human-robot interaction. Several robot attention models have been proposed which aim to enable a robot to identify the attentiveness of the humans with which it communicates and gives them its attention accordingly. However, previous proposed models are often susceptible to noisy observations and result in the robot's frequent and undesired shifts in attention. Furthermore, most approaches have difficulty adapting to change in the number of participants. To address these limitations, a novel attentiveness determination algorithm is proposed for determining the most attentive person, as well as prioritizing people based on attentiveness. The proposed algorithm, which is based on relevance theory, is named the Scalable Hidden Markov Model (Scalable HMM). The Scalable HMM allows effective computation and contributes an adaptation approach for human attentiveness; unlike conventional HMMs, Scalable HMM has a scalable number of states and observations and online adaptability for state transition probabilities, in terms of changes in the current number of states, i.e., the number of participants in a robot's view. The proposed approach was successfully tested on image sequences (7567 frames) of individuals exhibiting a variety of actions (speaking, walking, turning head, and entering or leaving a robot's view). From these experimental results, Scalable HMM showed a detection rate of 76% in determining the most attentive person and over 75% in prioritizing people's attention with variation in the number of participants. Compared to recent attention approaches, Scalable HMM's performance in people attention prioritization presents an approximately 20% improvement.

5.
Small ; 14(52): e1802618, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30398698

RESUMO

With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.


Assuntos
DNA/química , Nanopartículas/química , Nucleoproteínas/química , Proteínas/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Ligação Proteica , Dedos de Zinco
6.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384481

RESUMO

This paper presents a stereo camera-based head-eye calibration method that aims to find the globally optimal transformation between a robot's head and its eye. This method is highly intuitive and simple, so it can be used in a vision system for humanoid robots without any complex procedures. To achieve this, we introduce an extended minimum variance approach for head-eye calibration using surface normal vectors instead of 3D point sets. The presented method considers both positional and orientational error variances between visual measurements and kinematic data in head-eye calibration. Experiments using both synthetic and real data show the accuracy and efficiency of the proposed method.

7.
Bioorg Med Chem Lett ; 27(22): 5060-5064, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29042166

RESUMO

Antibody-mimetic proteins are intensively being developed for biomedical applications including tumor imaging and therapy. Among them, repebody is a new class of protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine (His6)-tag bearing repebody (rEgH9) was labeled with [99mTc]-tricarbonyl, and biodistribution was performed following intravenous (I.V.) or intraperitoneal (I.P.) injection. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. Biodistribution data indicates radiotracer has a rapid clearance from blood and excreted through the kidneys for intravenous (I.V.) injection, but comparatively slow clearance for an intraperitoneal (I.P.) injection. SPECT-CT images were found to be in agreement with biodistribution data, high activity was found inside kidneys. The observed result for rapid blood clearance and renal excretion of repebody (rEgH9) provide useful information for the further development of therapeutic strategy.


Assuntos
Proteínas/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Administração Intravenosa , Animais , Anticorpos/química , Anticorpos/metabolismo , Infusões Parenterais , Marcação por Isótopo , Rim/diagnóstico por imagem , Rim/metabolismo , Leucina/química , Leucina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
8.
Biochem Biophys Res Commun ; 470(4): 857-63, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26820537

RESUMO

Probing protein-protein interactions in living cells is crucial for understanding the protein functions and developing drugs. Small-sized protein binders are considered effective and useful for such analysis. Here we describe the development and use of a repebody, which is a protein binder composed of LRR (Leucine-rich repeat) modules, for tracking protein-protein interaction and localization in real-time through live-cell imaging. A repebody with high affinity for a red fluorescent protein was selected through a phage display, fused with a green fluorescent protein, and applied for tracing a red fluorescent protein-fused target protein in mammalian cells. The potential and utility of our approach was demonstrated by tracking the rapamycin-mediated interaction between FKBP12-rapamycin binding (FRB) domain and a FK506-binding protein (FKBP) and their localization by live-cell imaging. The present approach can be widely used for the analysis of protein-protein interaction and an understanding of complex biological processes in living cells.


Assuntos
Proteínas Luminescentes/metabolismo , Técnicas de Sonda Molecular , Mapeamento de Interação de Proteínas/métodos , Frações Subcelulares/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tacrolimo/metabolismo , Sondas Moleculares/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Proteína Vermelha Fluorescente
9.
Biochem Biophys Res Commun ; 477(4): 1072-1077, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27416759

RESUMO

The strongest anaphylatoxin, C5a, plays a critical role in the proinflammatory responses, causing the pathogenesis of a number of inflammatory diseases including sepsis, asthma, and rheumatoid arthritis. Inhibitors of C5a thus have great potential as therapeutics for various inflammatory disorders. Herein, we present the development of a high-affinity repebody against human C5a (hC5a), which effectively suppresses the proinflammatory response. A repebody scaffold composed of leucine-rich repeat (LRR) modules was previously developed as an alternative protein scaffold. A repebody specifically binding to hC5a was selected through a phage display, and its affinity was increased up to 5 nM using modular engineering. The repebody was shown to effectively inhibit the production of C5a-induced proinflammatory cytokines by human monocytes. To obtain insight into a mode of action by the repebody, we determined its crystal structure in complex with hC5a. A structural analysis revealed that the repebody binds to the D1 and D3 regions of hC5a, overlapping several epitope residues with the hC5a receptor (hC5aR). It is thus likely that the repebody suppresses the hC5a-mediated immune response in monocytes by blocking the binding of hC5a to its receptor. The anti-hC5a repebody can be developed as a potential therapeutic for C5a-involved inflammatory diseases.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Complemento C5a/química , Complemento C5a/imunologia , Mediadores da Inflamação/imunologia , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/imunologia , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Células Cultivadas , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Mediadores da Inflamação/química , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Ligação Proteica , Conformação Proteica
10.
Small ; 11(16): 1975-82, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25504978

RESUMO

Circulating tumor cells (CTCs) have attracted considerable attention as promising markers for diagnosing and monitoring the cancer status. Despite many technological advances in isolating CTCs, the capture efficiency and purity still remain challenges that limit clinical practice. Here, the construction of "nanotentacle"-structured magnetic particles using M13-bacteriophage and their application for the efficient capturing of CTCs is demonstrated. The M13-bacteriophage to magnetic particles followed by modification with PEG is conjugated, and further tethered monoclonal antibodies against the epidermal receptor 2 (HER2). The use of nanotentacle-structured magnetic particles results in a high capture purity (>45%) and efficiency (>90%), even for a smaller number of cancer cells (≈25 cells) in whole blood. Furthermore, the cancer cells captured are shown to maintain a viability of greater than 84%. The approach can be effectively used for capturing CTCs with high efficiency and purity for the diagnosis and monitoring of cancer status.


Assuntos
Separação Celular/métodos , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia , Animais , Bacteriófago M13/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Células HL-60 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Neoplasias/genética , Receptor ErbB-2/química , Análise de Sequência de DNA , Trastuzumab/química
11.
Mol Ther ; 22(7): 1254-1265, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682171

RESUMO

Interleukin-6 (IL-6) is a multifunctional cytokine that regulates immune responses for host defense and tumorigenic process. Upregulation of IL-6 is known to constitutively phosphorylate signal transducer and activator of transcription 3 (STAT3), leading to activation of multiple oncogene pathways and inflammatory cascade. Here, we present the development of a high-affinity protein binder, termed repebody, which effectively suppresses non-small cell lung cancer in vivo by blocking the IL-6/STAT3 signaling. We selected a repebody that prevents human IL-6 (hIL-6) from binding to its receptor by a competitive immunoassay, and modulated its binding affinity for hIL-6 up to a picomolar range by a modular approach that mimics the combinatorial assembly of diverse modules to form antigen-specific receptors in nature. The resulting repebody was highly specific for hIL-6, effectively inhibiting the STAT3 phosphorylation in a dose- and binding affinity-response manner in vitro. The repebody was shown to have a remarkable suppression effect on the growth of tumors and STAT3 phosphorylation in xenograft mice with non-small cell lung cancer by blocking the hIL-6/STAT3 signaling. Structural analysis of the repebody and IL-6 complex revealed that the repebody binds the site 2a of hIL-6, overlapping a number of epitope residues at site 2a with gp130, and consequently causes a steric hindrance to the formation of IL-6/IL-6Rα complex. Our results suggest that high-affinity repebody targeting the IL-6/STAT3 pathway can be developed as therapeutics for non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 109(9): 3299-304, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22328160

RESUMO

Repeat proteins have recently been of great interest as potential alternatives to immunoglobulin antibodies due to their unique structural and biophysical features. We here present the development of a binding scaffold based on variable lymphocyte receptors, which are nonimmunoglobulin antibodies composed of Leucine-rich repeat modules in jawless vertebrates, by module engineering. A template scaffold was first constructed by joining consensus repeat modules between the N- and C-capping motifs of variable lymphocyte receptors. The N-terminal domain of the template scaffold was redesigned based on the internalin-B cap by analyzing the modular similarity between the respective repeat units using a computational approach. The newly designed scaffold, termed "Repebody," showed a high level of soluble expression in bacteria, displaying high thermodynamic and pH stabilities. Ease of molecular engineering was shown by designing repebodies specific for myeloid differentiation protein-2 and hen egg lysozyme, respectively, by a rational approach. The crystal structures of designed repebodies were determined to elucidate the structural features and interaction interfaces. We demonstrate general applicability of the scaffold by selecting repebodies with different binding affinities for interleukin-6 using phage display.


Assuntos
Fragmentos de Peptídeos/química , Engenharia de Proteínas , Receptores Imunológicos/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Sequência Consenso , Cristalografia por Raios X , Feiticeiras (Peixe)/metabolismo , Concentração de Íons de Hidrogênio , Lampreias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura
13.
Angew Chem Int Ed Engl ; 54(3): 923-6, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25425202

RESUMO

Nanoparticle clusters (NPCs) have attracted significant interest owing to their unique characteristics arising from their collective individual properties. Nonetheless, the construction of NPCs in a structurally well-defined and size-controllable manner remains a challenge. Here we demonstrate a strategy to construct size-controlled NPCs using the DNA-binding zinc finger (ZnF) protein. Biotinylated ZnF was conjugated to DNA templates with different lengths, followed by incubation with neutravidin-conjugated nanoparticles. The sequence specificity of ZnF and programmable DNA templates enabled a size-controlled construction of NPCs, resulting in a homogeneous size distribution. We demonstrated the utility of magnetic NPCs by showing a three-fold increase in the spin-spin relaxivity in MRI compared with Feridex. Furthermore, folate-conjugated magnetic NPCs exhibited a specific targeting ability for HeLa cells. The present approach can be applicable to other nanoparticles, finding wide applications in many areas such as disease diagnosis, imaging, and delivery of drugs and genes.


Assuntos
DNA/metabolismo , Nanopartículas de Magnetita/química , Proteínas/metabolismo , Avidina/química , Biotinilação , DNA/química , Células HeLa , Humanos , Substâncias Intercalantes/química , Microscopia de Fluorescência , Ligação Proteica , Proteínas/química , Dedos de Zinco
14.
Angew Chem Int Ed Engl ; 54(41): 12020-4, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26315561

RESUMO

Targeted therapy based on protein-drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C-terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR-specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody-drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody-drug conjugates in human plasma, negligible off-target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.


Assuntos
Antineoplásicos/química , Receptores ErbB/metabolismo , Oligopeptídeos/química , Oximas/química , Proteínas/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Farnesiltranstransferase/metabolismo , Humanos , Camundongos Nus , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Oximas/metabolismo , Ligação Proteica , Prenilação de Proteína , Proteínas/metabolismo , Proteínas/uso terapêutico
15.
Anal Chem ; 86(12): 6019-25, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24877609

RESUMO

The importance of a downstream process for the purification of immunoglobulin antibodies is increasing with the growing application of monoclonal antibodies in many different areas. Although protein A is most commonly used for the affinity purification of antibodies, certain properties could be further improved: higher stability in alkaline solution and milder elution condition. Herein, we present the development of Fc-specific repebody by modular engineering approach and its potential as an affinity ligand for purification of human immunoglobulin antibodies. We previously developed the repebody scaffold composed of Leucine-rich repeat (LRR) modules. The scaffold was shown to be highly stable over a wide range of pH and temperature, exhibiting a modular architecture. We first selected a repebody that binds the Fc fragment of human immunoglobulin G (IgG) through a phage display and increased its binding affinity up to 1.9 × 10(-7) M in a module-by-module approach. The utility of the Fc-specific repebody was demonstrated by the performance of an immobilized repebody in affinity purification of antibodies from a mammalian cell-cultured medium. Bound-antibodies on an immobilized repebody were shown to be eluted at pH 4.0 with high purity (>94.6%) and recovery yield (>95.7%). The immobilized repebody allowed a repetitive purification process more than ten times without any loss of binding capability. The repebody remained almost intact even after incubation with 0.5 M NaOH for 15 days. The present approach could be effectively used for developing a repeat module-based binder for other target molecules for affinity purification.


Assuntos
Anticorpos/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Animais , Anticorpos/imunologia , Células CHO , Calorimetria , Cricetinae , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/imunologia
16.
Protein Expr Purif ; 101: 21-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24925643

RESUMO

Glycoprotein Ibα (GpIbα), a family of LRR (leucine-rich repeat) proteins, is a membrane protein on the platelet, and plays an important role in atherothrombotic events. The complex formation of GpIbα with the von Willebrand Factor (vWF) has been revealed to lead to acute coronary syndrome (ACS) or stroke. A considerable attention has been paid to understand the biological functions of GpIbα and its regulation. However, difficulty with the soluble expression of human GpIbα in bacteria has hampered the relevant research. Herein, we present a soluble expression of GpIbα in Escherichiacoli by replacing the N-terminal capping domain of GpIbα with that of Internalin B using a computational approach. The resulting protein was expressed as a soluble form in E. coli, maintaining its structural feature and binding property for vWF. The present approach can be broadly used for the soluble expression of human LRR proteins in E. coli.


Assuntos
Escherichia coli/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Proteínas Recombinantes de Fusão/genética , Fator de von Willebrand/química , Anticorpos/imunologia , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Humanos , Proteínas de Membrana/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/biossíntese , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia
17.
Immune Netw ; 22(3): e26, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35799707

RESUMO

IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.

18.
J Biotechnol ; 340: 57-63, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506803

RESUMO

Enterokinase is one of the hydrolases that catalyze hydrolysis to regulate biological processes in intestinal visceral mucosa. Enterokinase plays an essential role in accelerating the process of protein digestion as it converts trypsinogen into active trypsin by accurately recognizing and cleaving a specific peptide sequence, (Asp)4-Lys. Due to its exceptional substrate specificity, enterokinase is widely used as a versatile molecular tool in various bioprocessing, especially in removing fusion tags from recombinant proteins. Despite its biotechnological importance, mass production of soluble enterokinase in bacteria still remains an unsolved challenge. Here, we present an effective production strategy of human enterokinase using tandemly linked solubility enhancers consisting of thioredoxin, phosphoglycerate kinase or maltose-binding protein. The resulting enterokinases exhibited significantly enhanced solubility and bacterial expression level while retaining enzymatic activity, which demonstrates that combinatorial design of fusion proteins has the potential to provide an efficient way to produce recombinant proteins in bacteria.


Assuntos
Enteropeptidase , Escherichia coli , Sequência de Aminoácidos , Enteropeptidase/genética , Enteropeptidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Solubilidade
19.
iScience ; 24(2): 102104, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615202

RESUMO

Systematic control of in vivo behavior of protein-based therapeutics is considered highly desirable for improving their clinical outcomes. Modulation of biochemical properties including molecular weight, surface charge, and binding affinity has thus been suggested to enhance their therapeutic effects. However, establishing a relationship between the binding affinity and tumor localization remains a debated issue. Here we investigate the influence of the binding affinity of proteins on tumor localization by using four repebodies having different affinities to EGFR. Biochemical analysis and molecular imaging provided direct evidence that optimal affinity with balanced target binding and dissociation can facilitate deep penetration and accumulation of protein binders in tumors by overcoming the binding-site-barrier effect. Our findings suggest that binding kinetics-based protein design can be implicated in the development of fine-tuned protein therapeutics for cancers.

20.
Nanoscale ; 12(8): 4975-4981, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32057052

RESUMO

With the increasing number of identified intracellular drug targets, cytosolic drug delivery has gained much attention. Despite advances in synthetic drug carriers, however, construction of homogeneous and biocompatible nanostructures in a controllable manner still remains a challenge in a translational medicine. Herein, we present the modular design and assembly of functional DNA nanostructures through sequence-specific interactions between zinc-finger proteins (ZnFs) and DNA as a cytosolic drug delivery platform. Three kinds of DNA-binding ZnF domains were genetically fused to various proteins with different biological roles, including targeting moiety, molecular probe, and therapeutic cargo. The engineered ZnFs were employed as distinct functional modules, and incorporated into a designed ZnF-binding sequence of a Y-shaped DNA origami (Y-DNA). The resulting functional Y-DNA nanostructures (FYDN) showed self-assembled superstructures with homogeneous morphology, strong resistance to exonuclease activity and multi-modality. We demonstrated the general utility of our approach by showing efficient cytosolic delivery of PTEN tumour suppressor protein to rescue unregulated kinase signaling in cancer cells with negligible nonspecific cytotoxicity.


Assuntos
Proteínas de Ligação a DNA , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas , Neoplasias , PTEN Fosfo-Hidrolase , Dedos de Zinco , DNA/química , DNA/farmacocinética , DNA/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/farmacocinética , Proteínas de Ligação a DNA/farmacologia , Humanos , Células MCF-7 , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/farmacocinética , PTEN Fosfo-Hidrolase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA