Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(12): 5822-5827, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310291

RESUMO

We demonstrate an alternating current (AC) driven light emitting capacitor in which the color of the emission spectra can be changed via an applied AC frequency. The device has a simple metal-oxide-semiconductor (MOS) capacitor structure with an organic emissive layer, enabling facile fabrication processing. The organic emissive layer comprises a thin, submonolayer low energy dye layer underneath a thick host matrix (∼30 nm) with higher energy emitting dyes. The emission of the lower energy dyes dominates at low frequency, while the higher energy emission of the host matrix dominates at high frequency. This simple color tunable device could be used for full-color displays and lighting in the future.

2.
Chemistry ; 27(9): 3065-3073, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188526

RESUMO

In this work, a design approach of three thermally activated delayed fluorescence (TADF) emitters to extend the device lifetime of the TADF sensitized fluorescent devices was studied. Three TADF materials, 5-{4,6-bis[4-(tert-butyl)phenyl]-1,3,5-triazin-2-yl}-2-(10,15-diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-yl)benzonitrile (tTCNTruX), 4-[3-cyano-4-(10,15-diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-yl)phenyl]-2,6-diphenylpyrimidine-5-carbonitrile (PCNTruX) and 4-(4-{10,15-bis[4-(tert-butyl)phenyl]-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-yl}-3-cyanophenyl)-2,6-diphenylpyrimidine-5-carbonitrile (PCNtTruX), were synthesized as sensitizers for TADF-sensitized fluorescent organic light-emitting diodes. The two tTCNTruX and PCNtTruX TADF emitters were designed to have Dexter energy transfer with blocking groups either in the donor or acceptor unit of the donor-acceptor-type TADF sensitizer. The TADF materials showed small singlet-triplet energy splitting and a high reverse intersystem crossing (RISC) rate for effective sensitization of the fluorescent emission of the fluorescent emitter. tTCNTruX- and PCNtTruX-sensitized fluorescent devices showed maximum external quantum efficiencies (EQEs) of 17.7 % and 11.5 % in the yellow and red devices, respectively, which were higher than those of TADF-sensitized devices with the corresponding TADF sensitizer without a blocking group. Moreover, the device lifetime was also extended by employing the tTCNTruX and PCNtTruX sensitizers. This work demonstrated that the tTCNTruX and PCNtTruX sensitizers are effective to improve the maximum EQE and device lifetime of TADF-sensitized fluorescent devices.

3.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068572

RESUMO

High triplet energy hosts were developed through the modification of the substitution position of carbazole units. Two carbazole-dibenzofuran-derived compounds, 9,9'-(dibenzo[b,d]furan-2,6-diyl)bis(9H-carbazole) (26CzDBF) and 4,6-di(9H-carbazol-9-yl)dibenzo[b,d]furan (46CzDBF), were synthesized for achieving high triplet energy hosts. In comparison with the reported hole transport type host, 2,8-di(9H-carbazol-9-yl)dibenzo[b,d]furan (28CzDBF), 26CzDBF and 46CzDBF maintained high triplet energy over 2.95 eV. The device performances of the hosts were evaluated with electron transport type host, 2-phenyl-4, 6-bis(3-(triphenylsilyl)phenyl)-1,3,5-triazine (mSiTrz), to comprise a mixed host system. The deep blue phosphorescent device of 26CzDBF:mSiTrz with [[5-(1,1-dimethylethyl)-3-phenyl-1H-imidazo[4,5-b]pyrazin-1-yl-2(3H)-ylidene]-1,2-phenylene]bis[[6-(1,1-dimethylethyl)-3-phenyl-1H-imidazo[4,5-b]pyrazin-1-yl-2(3H)-ylidene]-1,2-phenylene]iridium (Ir(cb)3) dopant exhibited high external quantum efficiency of 22.9% with a color coordinate of (0.14, 0.16) and device lifetime of 1400 h at 100 cd m-2. The device lifetime was extended by 75% compared to the device lifetime of 28CzDBF:mSiTrz (800 h). These results demonstrated that the asymmetric and symmetric substitution of carbazole can make differences in the device performance of the carbazole- and dibenzofuran- derived hosts.

4.
J Am Chem Soc ; 142(18): 8074-8079, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294387

RESUMO

We developed a new optical method to determine the rate of reverse intersystem crossing (krISC) in thermally activated delayed fluorescent (TADF) organic chromophores using time-resolved transient absorption spectroscopy. We successfully correlated the krISC of the TADF-chromophores with device performance. Specifically, we focused on the external quantum efficiency (ηEQE) and the stability of the device at high brightness levels. It is believed that by obtaining a large krISC one may reduce the possibility of triplet-triplet annihilation (TTA) and increase the long-term stability of organic light emitting diodes (OLEDs) devices at high brightness levels (ηEQE roll-off). In this contribution, we investigate the photophysical mechanism in a series of TADF-chromophores based on carbazole or acridine derivatives as donor moieties, and triazine or benzonitrile derivatives as the acceptor moieties. We found a relationship between large krISC values and high ηEQE values at low operating voltages for the TADF-chromophores investigated. In addition, those chromophores with a larger krISC illustrated a smaller ηEQE roll-off (higher stability) at high operating voltages. These features are beneficial for superior OLEDs performing devices. Contrarily, we found that if a chromophore has a krISC ≤ 105s-1 its ηEQE is ≤5%. Such a small krISC suggests that there is no TADF effect operating in these organic systems and the molecule is not efficient in harvesting triplet excitons. Emission lifetime-based methodologies for determining the krISC were included for comparison but failed to predict the devices performance of the investigated TADF-chromophores to the same extent of our proposed methodology.

5.
Small ; 16(14): e1907569, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162765

RESUMO

Violet organic light-emitting diodes (OLEDs) with a very narrow emission spectrum with a full width at half maximum of 14 nm and y color coordinate of 0.02 are developed using a indolo[3,2,1-jk]carbazole-derived pure violet emitter. The violet emitter, 2,5,13,16-tetra-tert-butylindolo[3,2,1-jk]-indolo[1',2',3':1,7]indolo[2,3-b]carbazole (tDIDCz), is designed to have a very rigid molecular structure driven by the multiresonance-type core structure through the alternating carbon and nitrogen atoms. The violet emitter is decorated with t-butyl groups to prevent intermolecular aggregation and packing, which allow pure violet emission without excimer emission. The violet OLEDs derived from the tDIDCz emitter show a violet color coordinate of (0.164, 0.018) with a narrow emission spectrum and a full width at half maximum of 14 nm (105 meV). The external quantum efficiency of the pure violet OLEDs is 3.3%. This is the first work reporting pure violet emission without any ultraviolet emission below 380 nm and blue emission above 450 nm by showing a very narrow emission spectrum.

6.
Chemistry ; 26(11): 2429-2435, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31769095

RESUMO

N-type hosts for long lifetime in sky-blue thermally-activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) were investigated by synthesizing four hosts with zig-zag-type backbone structure for high triplet energy. The four hosts had two CN units at different positions of the zig-zag-type backbone structure and two dibenzofuran units through either the 2 or 4-position of dibenzofuran. The position of the CN unit was controlled at the meta and para-positions in the zig-zag-type backbone to study the relationship between material parameters and lifetime of the TADF OLEDs. It was revealed that the meta-orientation of the CN units in the backbone was advantageous to extend device lifetime of the sky-blue TADF OLEDs.

7.
Chemistry ; 26(4): 845-852, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31654423

RESUMO

Two efficient thermally activated delayed fluorescent (TADF) emitters were developed by utilizing CN-modified imidazopyridine as an acceptor unit. The CN-modified imidazopyridine acceptor was combined with either an acridine donor or a phenoxazine donor through a phenyl linker to produce two TADF emitters, Ac-CNImPy and PXZ-CNImPy. The acridine-based Ac-CNImPy emitter exhibited sky-blue emission with a CIE coordinate of (0.18, 0.38), whereas the phenoxazine-donor-based PXZ-CNImPy showed greenish-yellow emission with a CIE coordinate of (0.32, 0.58). A high photoluminescence quantum yield of 80 % was observed for the PXZ-CNImPy emitter compared with 40 % for the Ac-CNImPy emitter. Organic light-emitting diodes based on the PXZ-CNImPy emitter demonstrated high external quantum efficiency of 17.0 %. Hence, the CN-modified imidazopyridine unit can be considered as a useful electron acceptor for the future design of highly efficient TADF emitters.

8.
Chemistry ; 26(21): 4816-4821, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31967700

RESUMO

Benzofurocarbazole moieties are commonly used donor structures in the design of thermally activated delayed fluorescence (TADF) emitters. However, only 5 H-benzofuro[3,2-c]carbazole (34BFCz) has been reported and, to the best of our knowledge, no other benzofurocarbazole derivatives have been covered in the literature. In the present study, two further benzofurocarbazole moieties, 12 H-benzofuro[3,2-a]carbazole (12BFCz) and 7 H-benzofuro[2,3-b]carbazole (23BFCz), have been synthesized to investigate the effect of the donor structure on the photophysics and device parameters of TADF emitters. Two benzofurocarbazole-derived TADF emitters, 12-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12 H-benzofuro[3,2-a]carbazole (o12BFCzTrz) and 7-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-7 H-benzofuro[2,3-b]carbazole (o23BFCzTrz), have been compared with 5-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5 H-benzofuro[3,2-c]carbazole (oBFCzTrz). The benzofurocarbazole donor structure governs the TADF characteristics, such as charge-transfer property and emission color. The 12BFCz donor has proved to be effective in blue-shifting the emission color, and 34BFCz has proven useful for improving the external quantum efficiency (EQE). The 12BFCz-derived o12BFCzTrz showed blue-shifted color coordinates of (0.159, 0.288), compared to (0.178, 0388) for o23BFCzTrz and (0.169, 0.341) for oBFCzTrz. The 34BFCz-derived oBFCzTrz exhibited an EQE of 22.9 %, compared to 19.2 % for o12BFCzTrz and 21.1 % for o23BFCzTrz.

9.
Chemistry ; 25(38): 9060-9070, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985037

RESUMO

Organic light-emitting diodes are currently under research to achieve high efficiency and long life by using thermally activated delayed fluorescence (TADF) materials. In particular, many studies have focused on ensuring high efficiency in fluorescent devices by introducing TADF materials. Herein, four kinds of orange-colored TADF materials were synthesized and introduced into 5,10,15,20-tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1',2',3'-lm]perylene (DBP) red fluorescent devices as assistant dopants. These TADF materials assisted in achieving high efficiency in DBP devices by reducing nonradiative process by Dexter energy transfer and harvesting singlet excitons by a Förster resonance energy transfer process. Among the four TADF materials, 2-(3,5-di-tert-butylphenyl)-6-(9,9-diphenylacridin-10(9H)-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (DtBIQAP) showed a higher reverse intersystem crossing rate and a smaller nonradiative rate constant than the other two materials, which can reduce the exciton loss process. As a result, the DtBIQAP-assisted DBP device showed a high maximum external quantum efficiency of 18.2 % and color coordinates of (0.63, 0.37) in red fluorescent organic light-emitting diodes. This study provided a strategy of developing assistant dopants for high external quantum efficiency in TADF-assisted fluorescent devices.

10.
Chemistry ; 25(2): 642-648, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30338877

RESUMO

Blue thermally activated delayed fluorescent (TADF) devices with short excited-state lifetime, high reverse intersystem crossing rate, and low-efficiency roll-off were developed by managing the molecular structure of donor-acceptor-type blue emitters. Three isomers of blue TADF emitters with a diphenyltriazine acceptor and three carbazole donors were synthesized. The position of the donor moieties in the phenyl linker connecting the donor and acceptor moieties was controlled to devise compounds with a short delayed fluorescence lifetime. A blue TADF emitter with three carbazole donors at 2-, 3-, and 4- positions of a phenyl linker shortened the excited state lifetime to 4.1 µs, showed a high external quantum efficiency of 20.4 %, and low efficiency roll-off of less than 10 % at 1000 cd m-2 . Therefore, a molecular design distorting the donors by aligning them in a consecutive way is useful to resolve the issues of long delayed fluorescence lifetime and efficiency roll-off of blue TADF devices.

11.
Chemistry ; 25(50): 11765-11771, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31286581

RESUMO

A series of blue thermally activated delayed fluorescent (TADF) emitters of 1''-(4,6-diphenyl-1,3,5-triazin-2-yl)-9,9''-diphenyl-9H,9''H-3,3':9',4''-tercarbazole (TrzCz1) and 3',6'-di-tert-butyl-1-(4,6-diphenyl-1,3,5-triazin-2-yl)-9-phenyl-9H-4,9'-bicarbazole (TrzCz2) were synthesized through a molecular design approach to decorate phenylcarbazole with a donor and an acceptor. The 1- and 4-positions of the phenylcarbazole core were modified with a diphenyltriazine acceptor and a bicarbazole or tert-butylcarbazole donor, respectively, through a synthetic strategy to introduce Br at the 1-position and F at the 4-position. The TrzCz1 and TrzCz2 emitters showed maximum photoluminescence emission bands at λ=443 and 433 nm, which were blueshifted relative to those of the corresponding TADF emitters with the same donor and acceptor, respectively. In the device application, the TrzCz1 emitter showed a maximum external quantum efficiency of 22.4 %, with a color coordinate of (0.16, 0.21), and the TrzCz2 emitter showed a maximum external quantum efficiency of 9.9 %, with a color coordinate of (0.14, 0.09). This work proved that the design strategy of decorating phenylcarbazole with a donor and an acceptor is effective at blueshifting the emission of TADF emitters.

12.
Chemistry ; 25(7): 1829-1834, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30474278

RESUMO

Molecular design principles of thermally activated delayed fluorescent (TADF) emitters having a high quantum efficiency and a color tuning capability was investigated by synthesizing three TADF emitters with donors at different positions of a benzonitrile acceptor. The position rendering a large overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) enhances the quantum efficiency of the TADF emitter. Regarding the orbital overlap, donor attachments at 2- and 6-positions of the benzonitrile were more beneficial than 3- and 5-substitutions. Moreover, an additional attachment of a weak donor at the 4-position further increased the quantum efficiency without decreasing the emission energy. Therefore, the molecular design strategy of substituting strong donors at the positions allowing a large molecular orbital overlap and an extra weak donor is a good approach to achieve both high quantum efficiency and a slightly increased emission energy.

13.
Chem Rec ; 19(8): 1499-1517, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30375173

RESUMO

Recently, pure organic thermally activated delayed fluorescence (TADF) emitters have attracted considerable interest from the scientific community in the field of organic light emitting diodes (OLEDs) as they can theoretically realize 100 % of the internal quantum efficiency by exploiting both the singlet and triplet excitons via the reverse intersystem crossing enabled by small singlet-triplet energy splitting. Currently, the external quantum efficiency of the TADF emitters is reaching the level of phosphorescent emitters. Therefore, the TADF approach is considered as a potential alternative to the low efficiency conventional fluorescent and expensive phosphorescent emitters. In this account, we summarized our recent development of blue and green TADF molecular designs to improve the device performances of the TADF devices.

14.
J Nanosci Nanotechnol ; 18(10): 7047-7052, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954531

RESUMO

We have synthesized and characterized a blue phosphorescent iridium(III) complex (dfpypy)2Ir(tftamp), which contains 2',6'-difluoro-2,3'-bipyridine (dfpypy) as the main ligand and 4-methyl-2-(3'-trifluoromethyl-1'H-1',2',4'-triazol-5'-yl)pyridine (tftamp) as the ancillary ligand. The photophysical, electrochemical, and electroluminescent (EL) properties of (dfpypy)2Ir(tftamp) were investigated. Vacuum-deposited blue and white organic light-emitting diodes (OLEDs) were fabricated using (dfpypy)2Ir(tftamp) in 1,3-bis(carbazol-9-yl)benzene (mCP) as the emitting layer. The EL spectrum of (dfpypy)2Ir(tftamp) exhibited emission maximum at 472 nm with a full-width at half-maximum (FWHM) of 81 nm and Commission Internationale de L'Eclairage (CIE) coordinates of (0.17, 0.27) at 100 cd · m-2. In addition, white-light-emitting devices were fabricated, which exhibited CIE coordinates of (0.42, 0.40) and a correlated color temperature (CCT) of 3,237 K at 1000 cd · m-2, close to the standard warm-white light CIE coordinates of (0.44, 0.40) and CCT of 3,000 K.

15.
Opt Express ; 25(3): 2489-2495, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519094

RESUMO

We report a color tunable display consisting of two passive-matrix micro-LED array chips. The device has combined vertically stacked blue and green passive-matrix LED array chips sandwiched by a transparent bonding material. We demonstrate that vertically stacked blue and green micro-pixels are independently controllable with operation of four color modes. Moreover, the color of each pixel is tunable in the entire wavelength from the blue to green region (450 nm - 540 nm) by applying pulse-width-modulation bias voltage. This study is meaningful in that a dual color micro-LED array with a vertically stacked subpixel structure is realized.

16.
Chemistry ; 23(63): 16044-16050, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28834566

RESUMO

Four dibenzofuran-type host materials substituted with a carbazolylcarbazole moiety were synthesized to investigate the effect of substitution position on the material parameters and device performances of host materials. The carbazolylcarbazole moiety was substituted at the 1-, 2-, 3-, and 4-positions of dibenzofuran by F or Br for a comprehensive study of the positional effect of dibenzofuran-derived host materials. Systematic synthesis and comparison of the four host materials revealed that 1-, 2-, and 4-position modification was better than 3-position modification for high triplet energy and high external quantum efficiency.

17.
Opt Express ; 24(6): A667-73, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136884

RESUMO

In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.

18.
Opt Express ; 24(21): 24161-24168, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828247

RESUMO

White organic light-emitting diodes (WOLEDs) are regarded as the general lighting source. Although color rendering index (CRI) and luminous efficacy are usually in trade-off relation, we will discuss about the optimization of both characteristics, particularly focusing on the spectrum of a blue emitter. The emission at a shorter wavelength is substantially important for achieving very high CRI (> 90). The luminous efficacy of a phosphorescent blue emitter is low as its color falls in the deeper blue range; however, that does not show any significant influence on the WOLEDs. WOLEDs with different blue dopants are compared to confirm the calculation of the CRI and luminous efficacy, and the optimized WOLEDs exhibit luminous efficacy of 38.3 lm/W and CRI of 90.9.

19.
Chem Rec ; 16(1): 159-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26593740

RESUMO

It is important to balance holes and electrons in the emitting layer of organic light-emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light-emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light-emitting diodes.

20.
Nanotechnology ; 27(22): 224001, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098231

RESUMO

Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA