Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887039

RESUMO

Human-shark conflict has been managed through catch-and-kill policies in most parts of the world. More recently, there has been a greater demand for shark bite mitigation measures to improve protection for water users whilst minimizing harm to non-target and target species, particularly White Sharks (Carcharodon carcharias), given their status as a Threatened, Endangered, or Protected (TEP) species. A new non-lethal shark bite mitigation method, known as the Shark-Management-Alert-in-Real-Time (SMART) drumline, alerts responders when an animal takes the bait and thereby provides an opportunity for rapid response to the catch and potentially to relocate, tag, and release sharks. Thirty-six White Sharks were caught on SMART drumlines in New South Wales, Australia, and tagged with dorsal fin-mounted satellite-linked radio transmitters (SLRTs) and acoustic tags before release. Thirty-one sharks were located within 10 days, 22 of which provided high-quality locations (classes 1 to 3) suitable for analysis. Twenty-seven percent and 59% of these sharks were first detected within 10 and 50 h of release, respectively. For the first three days post-release, sharks moved and mostly remained offshore (>3.5 km from the coast), irrespective of shark sex and length. Thereafter, tagged sharks progressively moved inshore; however, 77% remained more than 1.9 km off the coast and an average of 5 km away from the tagging location, 10 days post-release. Sharks were acoustically detected for an average of 591 days post-release (ranging from 45 to 1075 days). Although five of the 36 sharks were not detected on acoustic receivers, SLRT detections for these five sharks ranged between 43 and 639 days post-release, indicating zero mortality associated with capture. These results highlight the suitability of SMART drumlines as a potential non-lethal shark bite mitigation tool for TEP species such as White Sharks, as they initially move away from the capture site, and thereby this bather protection tool diminishes the immediate risk of shark interactions at that site.

2.
Sci Rep ; 9(1): 18864, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827123

RESUMO

Bull sharks (Carcharhinus leucas) are known to frequent nearshore environments, particularly estuaries, resulting in interactions with humans. Knowledge of the behaviour of large individuals in temperate, estuarine environments is limited. This acoustic telemetry study reports on residency and movement patterns of 40 sub-adult and adult bull sharks in Sydney Harbour, a large temperate estuary, over seven years. Bull sharks exhibited clear seasonal patterns in their occurrence during the austral summer and autumn, with abundance peaking in January and February. This pattern was consistent between sexes and across all sizes. Bull sharks displayed weak diel differences in their spatial distribution, with individuals using areas further from the Harbour entrance more frequently during the day and at low tides. A diel pattern in depth use was apparent, with sharks utilising deeper water during daytime and moving shallower at night. Bull sharks had high individual inter-annual variability in their spatial distribution, however, when data were aggregated among all individuals and years, two locations of increased use were identified. Water temperature was the key predictor for seasonal movements and return behaviour to this estuary, suggesting that increasing water temperatures as a result of climate change may lead to higher shark abundance and possibly longer periods of residency in Sydney Harbour. Understanding the drivers for bull shark abundance and distribution will hopefully facilitate better education and shark smart behaviour by estuarine water-users, especially during summer and autumn months.


Assuntos
Locomoção , Estações do Ano , Tubarões/fisiologia , Animais , Estuários , Feminino , Masculino , New South Wales , Temperatura
3.
PLoS One ; 10(11): e0142454, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544185

RESUMO

Understanding the movement dynamics of marine fish provides valuable information that can assist with species management, particularly regarding protection within marine protected areas (MPAs). We performed an acoustic tagging study implemented within the Port Stephens-Great Lakes Marine Park on the mid-north coast of New South Wales, Australia, to assess the movement patterns, home range and diel activity of snapper (Chrysophrys auratus; Sparidae); a species of significant recreational and commercial fishing importance in Australia. The study focused on C. auratus movements around Cabbage Tree Island, which is predominantly a no-take sanctuary zone (no fishing), with an array of acoustic stations deployed around the island and adjacent reefs and islands. Thirty C. auratus were tagged with internal acoustic tags in November 2010 with their movements recorded until September 2014. Both adult and juvenile C. auratus were observed to display strong site fidelity to Cabbage Tree Island with a mean 12-month residency index of 0.83 (range = 0 low to 1 high). Only three fish were detected on acoustic receivers away from Cabbage Tree Island, with one fish moving a considerable distance of ~ 290 kms over a short time frame (46 days). The longest period of residency recorded at the island was for three fish occurring regularly at the site for a period of 1249 days. Chrysophrys auratus displayed strong diurnal behaviour and detection frequency was significantly higher during the day than at night; however, there was no significant difference in detection frequency between different hours. This study demonstrates that even small-scale protected areas can benefit C. auratus during multiple life-history stages as it maintains a small home range and displays strong site fidelity over a period of 3 years.


Assuntos
Comportamento Animal , Perciformes/fisiologia , Animais , Austrália , Conservação dos Recursos Naturais , Comportamento de Retorno ao Território Vital , Dinâmica Populacional , Telemetria
4.
PLoS One ; 9(1): e83249, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24421879

RESUMO

Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km³. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.


Assuntos
Migração Animal/fisiologia , Recifes de Corais , Oceanos e Mares , Acústica , Animais , Austrália , Mergulho/fisiologia , Feminino , Geografia , Masculino , Nova Caledônia , Comunicações Via Satélite , Tubarões , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA