Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
EMBO Rep ; 25(3): 1233-1255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413732

RESUMO

Accumulation of amyloid-beta (Aß) can lead to the formation of aggregates that contribute to neurodegeneration in Alzheimer's disease (AD). Despite globally reduced neural activity during AD onset, recent studies have suggested that Aß induces hyperexcitability and seizure-like activity during the early stages of the disease that ultimately exacerbate cognitive decline. However, the underlying mechanism is unknown. Here, we reveal an Aß-induced elevation of postsynaptic density protein 95 (PSD-95) in cultured neurons in vitro and in an in vivo AD model using APP/PS1 mice at 8 weeks of age. Elevation of PSD-95 occurs as a result of reduced ubiquitination caused by Akt-dependent phosphorylation of E3 ubiquitin ligase murine-double-minute 2 (Mdm2). The elevation of PSD-95 is consistent with the facilitation of excitatory synapses and the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induced by Aß. Inhibition of PSD-95 corrects these Aß-induced synaptic defects and reduces seizure activity in APP/PS1 mice. Our results demonstrate a mechanism underlying elevated seizure activity during early-stage Aß pathology and suggest that PSD-95 could be an early biomarker and novel therapeutic target for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/patologia , Receptores de AMPA/metabolismo , Convulsões
2.
Mol Psychiatry ; 28(9): 3782-3794, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37759036

RESUMO

Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.


Assuntos
Transtorno Autístico , Animais , Feminino , Masculino , Camundongos , Transtorno Autístico/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
EMBO Rep ; 22(10): e52645, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34342389

RESUMO

Individuals affected by infantile spasms (IS), such as those carrying mutations in an IS-linked gene, neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2), exhibit developmental delays and learning disabilities, but the underlying mechanism is unknown. Using conditional Nedd4-2 knockout mice, we uncover that Nedd4-2 functions to maintain the excitatory synapses in hippocampal neurons and allows for late-phase long-term synaptic potentiation (L-LTP) at Schaffer collateral synapses in the hippocampus. We also find that Nedd4-2 is required for multiple forms of hippocampus-dependent learning and memory. Mechanistically, we show that loss of Nedd4-2 leads to a decrease in actin polymerization caused by reduced phosphorylation of the actin depolymerizing protein cofilin. A cell-permeable peptide promoting phosphorylation of endogenous cofilin in Nedd4-2 knockout neurons restores the number of hippocampal excitatory synapses and hippocampal L-LTP and partially restores hippocampus-dependent learning in mice. Taken together, our results reveal a novel mechanism underlying IS-associated learning disabilities and may provide information for future therapeutic strategies for IS.


Assuntos
Fatores de Despolimerização de Actina , Espasmos Infantis , Fatores de Despolimerização de Actina/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Lactente , Aprendizagem , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal , Espasmos Infantis/genética , Sinapses/metabolismo
4.
Neurobiol Dis ; 158: 105450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303799

RESUMO

Imbalanced neuronal excitability homeostasis is commonly observed in patients with fragile X syndrome (FXS) and the animal model of FXS, the Fmr1 KO. While alterations of neuronal intrinsic excitability and synaptic activity at the steady state in FXS have been suggested to contribute to such a deficit and ultimately the increased susceptibility to seizures in FXS, it remains largely unclear whether and how the homeostatic response of neuronal excitability following extrinsic challenges is disrupted in FXS. Our previous work has shown that the acute response following induction of endoplasmic reticulum (ER) stress can reduce neural activity and seizure susceptibility. Because many signaling pathways associated with ER stress response are mediated by Fmr1, we asked whether acute ER stress-induced reduction of neural activity and seizure susceptibility are altered in FXS. Our results first revealed that acute ER stress can trigger a protein synthesis-dependent prevention of neural network synchronization in vitro and a reduction of susceptibility to kainic acid-induced seizures in vivo in wild-type but not in Fmr1 KO mice. Mechanistically, we found that acute ER stress-induced activation of murine double minute-2 (Mdm2), ubiquitination of p53, and the subsequent transient protein synthesis are all impaired in Fmr1 KO neurons. Employing a p53 inhibitor, Pifithrin-α, to mimic p53 inactivation, we were able to blunt the increase in neural network synchronization and reduce the seizure susceptibility in Fmr1 KO mice following ER stress induction. In summary, our data revealed a novel cellular defect in Fmr1 KO mice and suggest that an impaired response to common extrinsic challenges may contribute to imbalanced neuronal excitability homeostasis in FXS.


Assuntos
Estresse do Retículo Endoplasmático/genética , Síndrome do Cromossomo X Frágil/genética , Convulsões/genética , Animais , Benzotiazóis/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Predisposição Genética para Doença/genética , Ácido Caínico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/fisiopatologia , Técnicas de Patch-Clamp , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
5.
Hum Mol Genet ; 27(16): 2805-2816, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29771335

RESUMO

Synaptic scaling allows neurons to homeostatically readjust synaptic strength upon chronic neural activity perturbations. Although altered synaptic scaling has been implicated to underlie imbalanced brain excitability in neurological disorders such as autism spectrum disorders and epilepsy, the molecular dysregulation and restoration of synaptic scaling in those diseases have not been demonstrated. Here, we showed that the homeostatic synaptic downscaling is absent in the hippocampal neurons of Fmr1 KO mice, the mouse model of the most common inherited autism, fragile X syndrome (FXS). We found that the impaired homeostatic synaptic downscaling in Fmr1 KO neurons is caused by loss-of-function dephosphorylation of an epilepsy-associated ubiquitin E3 ligase, neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2. Such dephosphorylation of Nedd4-2 is surprisingly caused by abnormally stable tumor suppressor p53 and subsequently destabilized kinase Akt. Dephosphorylated Nedd4-2 fails to elicit 14-3-3-dependent ubiquitination and down-regulation of the GluA1 subunit of AMPA receptor, and therefore impairs synaptic downscaling. Most importantly, using a pharmacological inhibitor of p53, Nedd4-2 phosphorylation, GluA1 ubiquitination and synaptic downscaling are all restored in Fmr1 KO neurons. Together, our results discover a novel cellular mechanism underlying synaptic downscaling, and demonstrate the dysregulation and successful restoration of this mechanism in the FXS mouse model.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Proteína Supressora de Tumor p53/genética , Animais , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteína Oncogênica v-akt/genética , Receptores de AMPA/genética , Sinapses/genética , Sinapses/patologia
6.
PLoS Genet ; 13(2): e1006634, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28212375

RESUMO

The neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2, is an epilepsy-associated gene with at least three missense mutations identified in epileptic patients. Nedd4-2 encodes a ubiquitin E3 ligase that has high affinity toward binding and ubiquitinating membrane proteins. It is currently unknown how Nedd4-2 mediates neuronal circuit activity and how its dysfunction leads to seizures or epilepsies. In this study, we provide evidence to show that Nedd4-2 mediates neuronal activity and seizure susceptibility through ubiquitination of GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (AMPAR). Using a mouse model, termed Nedd4-2andi, in which one of the major forms of Nedd4-2 in the brain is selectively deficient, we found that the spontaneous neuronal activity in Nedd4-2andi cortical neuron cultures, measured by a multiunit extracellular electrophysiology system, was basally elevated, less responsive to AMPAR activation, and much more sensitive to AMPAR blockade when compared with wild-type cultures. When performing kainic acid-induced seizures in vivo, we showed that elevated seizure susceptibility in Nedd4-2andi mice was normalized when GluA1 is genetically reduced. Furthermore, when studying epilepsy-associated missense mutations of Nedd4-2, we found that all three mutations disrupt the ubiquitination of GluA1 and fail to reduce surface GluA1 and spontaneous neuronal activity when compared with wild-type Nedd4-2. Collectively, our data suggest that impaired GluA1 ubiquitination contributes to Nedd4-2-dependent neuronal hyperactivity and seizures. Our findings provide critical information to the future development of therapeutic strategies for patients who carry mutations of Nedd4-2.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Epilepsia/genética , Neurônios/metabolismo , Receptores de AMPA/genética , Convulsões/genética , Ubiquitina-Proteína Ligases/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Epilepsia/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Knockout , Microscopia Confocal , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases Nedd4 , Neurônios/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de AMPA/metabolismo , Convulsões/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
7.
J Neurochem ; 151(3): 289-300, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31357244

RESUMO

Neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2) is an epilepsy-associated gene, which encodes a ubiquitin E3 ligase that is highly expressed in the brain. Nedd4-2's substrates include many ion channels and receptors because its N-terminal C2 domain guides Nedd4-2 to the cell membrane. We previously found that Nedd4-2 ubiquitinates the glutamate receptor subunit 1 (GluA1) subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, which leads to reduction of neuronal excitability and seizures in mice. However, despite awareness of a Nedd4-2 isoform with no C2 domain, the functions of this isoform remain elusive. In this study, we showed that the C2-lacking Nedd4-2 has reduced membrane distribution and exhibits reduced affinity toward ubiquitinating GluA1. However, when expressed in primary cortical neurons, we found that the C2-lacking Nedd4-2 exhibits a similar activity toward reducing excitatory synaptic strength as does the C2-containing Nedd4-2. In an attempt to identify novel Nedd4-2 substrates that could mediate excitatory synaptic strength, we used unbiased proteomic screening and found multiple synaptic regulators that were up-regulated in the brain of conditional Nedd4-2 knockout mice, including protein phosphatase 3 catalytic subunit-α (PPP3CA; alternately called calcineurin A-α). We confirmed PPP3CA as a substrate of the C2-lacking Nedd4-2 and showed that all three epilepsy-associated missense mutations of Nedd4-2 disrupted PPP3CA ubiquitination. Altogether, our results revealed novel potential Nedd4-2 substrates and suggest that the C2-lacking Nedd4-2 represses excitatory synaptic strength most likely through GluA1 ubiquitination-independent mechanisms. These findings provide novel information to further our knowledge about Nedd4-2-dependent neuronal excitability homeostasis and pathological hyperexcitability when Nedd4-2 is compromised.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Ubiquitinação/genética , Animais , Pareamento Cromossômico/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Epilepsia/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
8.
Hum Mol Genet ; 26(20): 3895-3908, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016848

RESUMO

Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Rede Nervosa/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Técnicas de Cultura de Células , Regulação para Baixo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Rede Nervosa/metabolismo , Neurônios/metabolismo , Coelhos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais
9.
Small ; 15(36): e1902090, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31328875

RESUMO

Recently, nonnoble-metal catalysts such as a metal coordinated to nitrogen doped in a carbon matrix have been reported to exhibit superior oxygen reduction reaction (ORR) activity in alkaline media. In this work, Co2 P nanoparticles supported on heteroatom-doped carbon catalysts (NBSCP) are developed with an eco-friendly synthesis method using bean sprouts. NBSCP can be easily synthesized through metal precursor absorption and carbonization at a high temperature. It shows a very large specific surface area with various dopants such as nitrogen, phosphorus, and sulfur derived from small organic molecules. The catalyst can exhibit activity in various electrochemical reactions. In particular, excellent performance is noted for the ORR. Compared to the commercial Pt/C, NBSCP exhibits a lower onset potential, higher current density, and superior durability. This excellent ORR activity and durability is attributable to the synergistic effect between Co2 P nanoparticles and nitrogen-doped carbon. In addition, superior performance is noted on applying NBSCP to a practical anion exchange membrane fuel cell system. Through this work, the possibility of applying an easily obtained bio-derived material to energy conversion and storage systems is demonstrated.

10.
Neurobiol Dis ; 118: 76-93, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008368

RESUMO

Neuronal Kv7/KCNQ channels are voltage-gated potassium channels composed of Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits. Enriched at the axonal membrane, they potently suppress neuronal excitability. De novo and inherited dominant mutations in Kv7.2 cause early onset epileptic encephalopathy characterized by drug resistant seizures and profound psychomotor delay. However, their precise pathogenic mechanisms remain elusive. Here, we investigated selected epileptic encephalopathy causing mutations in calmodulin (CaM)-binding helices A and B of Kv7.2. We discovered that R333W, K526N, and R532W mutations located peripheral to CaM contact sites decreased axonal surface expression of heteromeric channels although only R333W mutation reduced CaM binding to Kv7.2. These mutations also altered gating modulation by phosphatidylinositol 4,5-bisphosphate (PIP2), revealing novel PIP2 binding residues. While these mutations disrupted Kv7 function to suppress excitability, hyperexcitability was observed in neurons expressing Kv7.2-R532W that displayed severe impairment in voltage-dependent activation. The M518 V mutation at the CaM contact site in helix B caused most defects in Kv7 channels by severely reducing their CaM binding, K+ currents, and axonal surface expression. Interestingly, the M518 V mutation induced ubiquitination and accelerated proteasome-dependent degradation of Kv7.2, whereas the presence of Kv7.3 blocked this degradation. Furthermore, expression of Kv7.2-M518V increased neuronal death. Together, our results demonstrate that epileptic encephalopathy mutations in helices A and B of Kv7.2 cause abnormal Kv7 expression and function by disrupting Kv7.2 binding to CaM and/or modulation by PIP2. We propose that such multiple Kv7 channel defects could exert more severe impacts on neuronal excitability and health, and thus serve as pathogenic mechanisms underlying Kcnq2 epileptic encephalopathy.


Assuntos
Axônios/metabolismo , Encefalopatias/metabolismo , Epilepsia Generalizada/metabolismo , Canal de Potássio KCNQ2/biossíntese , Neurônios/metabolismo , Fosfatidilinositóis/biossíntese , Sequência de Aminoácidos , Animais , Axônios/patologia , Encefalopatias/genética , Encefalopatias/patologia , Epilepsia Generalizada/genética , Epilepsia Generalizada/patologia , Expressão Gênica , Células HEK293 , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Neurônios/patologia , Fosfatidilinositóis/genética , Estrutura Secundária de Proteína , Ratos
11.
J Nanosci Nanotechnol ; 18(2): 1419-1422, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448603

RESUMO

p-Xylene (PX) is an important large-volume commodity chemical in the petrochemical industry. Therefore, research on producing PX from bio-mass-derived resources is a considerable interest in relation to future alternative technologies. Recently, a new potential route for the direct and selective production of bio-based PX was reported, referred to as the Diels-Alder cycloaddition of biomassderived 2,5-dimethylfuran (DMF) and ethylene followed by the dehydration of an intermediate. Here, we prepared tungstated zirconia (WOx-ZrO2) materials at different calcination temperatures and times as solid acid catalysts for PX production. From structural analyses and measurements of the surface acidity, the WOx-ZrO2 was found to be composed of mesopores with high surface acidity within the optimum calcination temperature and time range. This WOx-ZrO2 catalyst exhibited high catalytic activity upon the cycloaddition of DMF with ethylene as compared to commercial beta zeolite and previously reported silica-alumina catalysts.

12.
J Nanosci Nanotechnol ; 17(4): 2695-699, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-29664583

RESUMO

Mesoporous SiO2­Al2O3 (SA) catalysts with different SiO2 contents were prepared, for the selective production of p-xylene from dimethylfuran/ethylene through the combination of cycloaddition and dehydrative aromatization reactions, by a co-precipitation method. For comparison, commercial SiO2­Al2O3 and ZSM-5 zeolites (Si/Al2 = 30, Si/Al2 = 80) were also employed as catalysts in the same reaction. The pore size of the catalysts played an important role in determining the catalytic performance in the production of p-xylene. Among the catalysts tested, the order of the yield and production rate of p-xylene was as follows: mesoporous SA > commercial SiO2­Al2O3 > commercial ZSM-5. In the mesoporous SA catalysts in particular, p-xylene yields showed a volcano-shaped trend with respect to the catalyst's SiO2 content. The SA-60 catalyst, with SiO2 = 52.3, showed the highest yield (75%) and production rate (57.7 mmol/g-cat · h) because of a catalyst structure with moderate pore size, which prevented side reactions.

13.
J Nanosci Nanotechnol ; 17(4): 2545-549, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29652123

RESUMO

Ni catalysts supported on ordered mesoporous alumina (OMA) were prepared by EISA method and calcined under air and Ar atmospheres. Both catalysts showed stable performance for the dry reforming of methane for 24 h, however the catalytic activity of Ar calcined catalyst was relatively lower than that in the air calcined one. It was found that the carbon (C ß ) layer around nickel particles was observed for the Ar calcined catalyst after dry reforming of methane. The encapsulating carbon species in the Ar calcined catalyst lowering the mass transfer rate of feeds led to lower performance, but no whisker carbon was observed. In the case of the air calcined catalyst, whisker carbon (C(v)) which is inactive during dry reforming was accumulated on the catalyst, and it resulted in catalyst breakdown and pressure drop during the reaction.

14.
J Nanosci Nanotechnol ; 15(11): 8783-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726594

RESUMO

1,2-propanediol (1,2-PDO) is one of the promising product among the valuable products derived from glycerol and it can be obtained by the catalytic hydrogenolysis of glycerol. Copper-supported clay-based catalysts were prepared with different pore sizes using various ratios of kaolin, Mg, and Al by coprecipitation and applied in the selective hydrogenolysis of glycerol to 1,2-PDO. In recent research, variations of pore volume and pore size could affect the diffusion of reagents within the catalyst due to the collision between reagents or pore wall and reagents. It changes selectivities of each product in hydrogenolysis of glycerol reaction. The physico-chemical properties of the catalysts were analyzed by XRD, N2 physisorption, TPR, CO2-TPD, SEM, and a mercury porosimeter. The Cu/TALCITE 4 catalyst showed 98% 1,2-PDO selectivity with 65% glycerol conversion under the optimized condition of 190 degrees C, 25 bar, and 20 wt% glycerol aqueous solution. It was found that the basic strength and meso-macro pore structure of the catalysts play an important role in glycerol conversion and 1,2-PDO selectivity.


Assuntos
Silicatos de Alumínio/química , Glicerol/química , Hidrogênio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Propilenoglicol/síntese química , Catálise , Argila , Ligação de Hidrogênio , Teste de Materiais , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade
15.
Biomacromolecules ; 15(6): 2172-9, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24773064

RESUMO

Intercellular adhesion modulated by cadherin molecules plays an important role in diverse cellular functions including tissue morphogenesis, regeneration, and pathogenesis. However, it is a challenging task to decipher the effects of cell-cell adhesion in vitro because of difficulty in controlling the extent and numbers of cell-cell contacts. In this study, we hypothesize that tethering recombinant extracellular domains of neural cadherin with a C-terminal immunoglobulin Fc domain (N-Cad-Fc) to a substrate with an immobilized anti-Fc antibody (Fc-antibody) and a bifunctional polymer, which is reactive to both protein and substrate, would allow us to recapitulate cell-cell adhesion, independent of the number of cells plated on the substrate. To examine this hypothesis, we first immobilized Fc-antibody to a polyacrylamide hydrogel and a methacrylate-substituted glass using poly(amino-2-hydroxyethyl-co-2-methacryloxyethyl aspartamide)-g-poly(ethylene glycol)-N-hydroxysuccinimide ester (PHMAA-g-PEGNHS) and then incubated the gel in medium containing defined concentrations of the recombinant N-Cad-Fc. The resulting N-Cad-conjugated substrate enabled us to modulate adhesion of bone marrow stromal cells to the gel surface by varying the surface density of N-Cad-Fc. In contrast, direct chemical conjugation of N-Cad-Fc to the gel surface did not support cell adhesion. Additionally, the glass substrate biologically tethered with N-Cad-Fc promoted neuronal adhesion significantly more than substrates coated with poly-l-lysine. We suggest that this novel biological tethering method could be broadly applicable for modifying substrates with a variety of classical cadherins to enable the systematic study of the effects of cadherin-modulated cell-cell adhesion on cellular activities.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Animais , Antígenos CD/química , Caderinas/química , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Especificidade por Substrato/fisiologia
16.
Angew Chem Int Ed Engl ; 53(46): 12484-8, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25255882

RESUMO

We developed a coating method to produce functionalized small quantum dots (sQDs), about 9 nm in diameter, that were stable for over a month. We made sQDs in four emission wavelengths, from 527 to 655 nm and with different functional groups. AMPA receptors on live neurons were labeled with sQDs and postsynaptic density proteins were visualized with super-resolution microscopy. Their diffusion behavior indicates that sQDs access the synaptic clefts significantly more often than commercial QDs.


Assuntos
Corantes Fluorescentes/análise , Neurônios/citologia , Pontos Quânticos/análise , Receptores de AMPA/análise , Animais , Células Cultivadas , Microscopia de Fluorescência , Imagem Óptica , Ratos
17.
EMBO Mol Med ; 16(3): 506-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374465

RESUMO

Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.


Assuntos
Compostos Benzidrílicos , Síndrome do Cromossomo X Frágil , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Receptores de Glutamato Metabotrópico/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
18.
Nat Commun ; 15(1): 3356, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637502

RESUMO

To realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm‒2), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.

19.
J Nanosci Nanotechnol ; 13(11): 7701-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245318

RESUMO

In this study, a novel, strategic method was developed for the synthesis of a mesoporous silica catalyst embedded with ruthenium nanoparticles (RuNPs/SiO2) by combining the polyol and modified sol-gel methods. By applying this new procedure, uniformly synthesized ruthenium nanoparticles with an average size of 3.8 nm and 95% spherical shape were highly dispersed in the mesoporous silica support material. Coordinated carbonyl groups of PVP remaining from the synthesis of the RuNPs were effectively removed by the thermal treatment (calcined at 573 K for 4 h) and the sythesized RuNPs/SiO2 catalysts were reduced under hydrogen at 20 bar for 2 h. These catalysts were analyzed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, and X-ray diffraction (XRD). After the thermal treatment and the reduction procedure, the size and shape of the embedded RuNPs were nearly unchanged, and the catalyst was active in the liquid-phase hydrogenation of succinic anhydride (SAN) to selectively form y-butyrolactone (GBL) with a maximum yield of 90.1%. This novel catalyst preparation is a potentially useful method for the synthesis of metal nanoparticles as heterogeneous catalysts.


Assuntos
4-Butirolactona/síntese química , Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Rutênio/química , Dióxido de Silício/química , Anidridos Succínicos/química , 4-Butirolactona/isolamento & purificação , Adsorção , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
20.
J Nanosci Nanotechnol ; 13(8): 5874-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23882852

RESUMO

The effect of catalyst support on the aqueous phase reforming of ethylene glycol over supported 2 wt% Pt/Ce0.15Zr0.85O2 catalysts have been investigated. Various types of Ce0.15Zr0.85O2 mixed oxides were prepared by hydrothermal precipitation (CZH), modified precipitation (CZM), co-precipitation (CZC), sol-gel (CZS) methods, respectively. Catalysts were characterized by XRD, N2 sorption analysis, and cyclohexane dehydration for relative metal dispersion. The support effect on the activity of 2 wt% Pt/Ce0.15Zr0.85O2 catalysts with different preparation method was given as follows: CZH < CZM < CZC < CZS. Pt/Ce0.15Zr0.85O2 (CZS) catalyst showed good catalytic activity for APR reaction due to its high metal dispersion and reducibility. The effect of reaction conditions such as reaction temperature, weight hourly space velocity (WHSV) was also studied. The hydrogen production rate and hydrogen yield increased in proportion to the reaction temperature and corresponding system pressure, whereas WHSV did not affect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA