Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(4): 2390-2397, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192940

RESUMO

We employed modified glass nanocapillaries to investigate interactions between the RNA-binding protein, known as cell carcinoma antigen recognized by T cells-3 (SART3), and the noncoding spliceosome component, U6 small nuclear RNA (snRNA), at the single-molecule level. We functionalized the nanocapillaries with U6 snRNA fragments, which were hybridized to DNA molecules and then covalently attached to the nanocapillary surface. When transported through the modified nanocapillaries, two different SART3-derived constructs, HAT-RRM1-RRM2 and RRM1-RRM2, exhibited resistive ionic current pulses with different dwell times, which represented their different binding affinities to tethered U6 snRNAs. The dissociation constants (KD), estimated from the bias voltage dependence of translocation events, were approximately 1.9 µM and 201 µM for HAT-RRM1-RRM2 and RRM1-RRM2, respectively. These values were comparable to corresponding values obtained with isothermal titration calorimetry, demonstrating that the modified glass nanocapillaries are applicable to analyses of protein-ligand interactions at the single-molecule level.


Assuntos
Antígenos de Neoplasias/metabolismo , Calorimetria , Nanotubos/química , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antígenos de Neoplasias/química , Eletricidade , Humanos , Concentração de Íons de Hidrogênio , Cinética , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Ligação a RNA/química
2.
Adv Mater ; 35(16): e2209788, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750416

RESUMO

The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel-like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork-shaped SU-8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU-8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork-shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short-circuit current (ISC ) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2 . These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used.

3.
Lab Chip ; 21(5): 951-961, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33475100

RESUMO

Modularity is a key feature of structural and functional brain networks. However, the association between the structure and function of modular brain networks has not been revealed. We constructed three types of modular cortical networks in vitro and investigated their neuronal activities. The modular networks comprising 4, 3, or 2 modules were constructed using polydimethylsiloxane (PDMS) microstructures fabricated directly on a multi-electrode array (MEA) without transfer. The 4-module network had the strongest modular connectivity, followed by the 3-module and 2-module networks. To investigate how neuronal activities were affected by the modular network structure, spontaneous neuronal activities were recorded on different days in vitro and analyzed based on spike amplitudes, network bursts, and the propagation properties of individual spikes. Different characteristics were observed depending on the network topology and modular connectivity. Moreover, when an electrode was stimulated by biphasic voltage pulses, bursts were elicited for the 4-module network, whereas spikes were elicited for the 3-module and 2-module networks. Direct fabrication of the PDMS microstructures on the MEA without transfer allows microscale construction of modular networks and high-density functional recording; therefore, the technique utilizing the PDMS microstructures can be applied to the systematic study of the dynamics of modular neuronal networks in vitro.


Assuntos
Rede Nervosa , Neurônios , Encéfalo
4.
Sci Rep ; 10(1): 13709, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792573

RESUMO

To prescribe effective antibiotics to patients with bacterial infections in a timely manner and to avoid the misuse of antibiotics, a rapid antimicrobial susceptibility test (AST) is essential. However, conventional AST methods require more than 16 h to provide results; thus, we developed an electrical AST (e-AST) system, which provides results within 6 h. The proposed e-AST is based on an array of 60 aptamer-functionalized capacitance sensors that are comparable to currently available AST panels and a pattern-matching algorithm. The performance of the e-AST was evaluated in comparison with that of broth microdilution as the reference test for clinical strains isolated from septic patients. A total of 4,554 tests using e-AST showed a categorical agreement of 97% with a minor error of 2.2%, major error of 0.38%, and very major error of 0.38%. We expect that the proposed e-AST could potentially aid antimicrobial stewardship efforts and lead to improved patient outcomes.


Assuntos
Antibacterianos/farmacologia , Aptâmeros de Nucleotídeos/química , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Técnicas Biossensoriais/métodos , Capacitância Elétrica , Testes de Sensibilidade Microbiana/métodos , Bactérias/classificação , Humanos
5.
Biosens Bioelectron ; 143: 111623, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472413

RESUMO

For the treatment of bacteremia, early diagnosis and rapid antibiotic susceptibility tests (ASTs) are necessary because survival chances decrease significantly if the proper antibiotic administration is delayed. However, conventional methods require several days from blood collection to AST as it requires three overnight cultures, including blood culture, subculture, and AST culture. Herein, we report a more rapid method of sensing bacterial growth and AST in blood based on a vertical capacitance sensor functionalized with aptamers. Owing to their vertical structure, the influence of blood cells sunk by gravity on capacitance measurements were minimized. Thus, bacterial growth in blood at 100-103 CFU/mL was monitored in real-time by measuring changes in capacitance at f = 10 kHz. Moreover, real-time capacitance measurements at f = 0.5 kHz provided information on biofilm formation induced during blood cultures. Bacterial growth and biofilm formation are inhibited above the minimal inhibitory concentration of antibiotics; therefore, we also demonstrated that vertical capacitance aptasensors could be applied to rapid AST from positive blood cultures without a need for the subculture process.


Assuntos
Antibacterianos/sangue , Bacteriemia/sangue , Técnicas Bacteriológicas , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Capacitância Elétrica , Humanos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA