Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 146(12): 8280-8297, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38467029

RESUMO

Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.

2.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472974

RESUMO

Hierarchically ordered oxides are of critical importance in material science and catalysis. Unfortunately, the design and synthesis of such systems remains a key challenge to realizing their potential. In this study, we demonstrate how the deposition of small oligomeric (MoO3)1-6 clusters-formed by the facile sublimation of MoO3 powders-leads to the self-assembly of locally ordered arrays of immobilized mono-oxo (MoO3)1 species on anatase TiO2(101). Using both high-resolution imaging and theoretical calculations, we reveal the dynamic behavior of the oligomers as they spontaneously decompose at room temperature, with the TiO2 surface acting as a template for the growth of this hierarchically structured oxide. Transient mobility of the oligomers on both bare and (MoO3)1-covered TiO2(101) areas is identified as key to the formation of a complete (MoO3)1 overlayer with a saturation coverage of one (MoO3)1 per two undercoordinated surface Ti sites. Simulations reveal a dynamic coupling of the reaction steps to the TiO2 lattice fluctuations, the absence of which kinetically prevents decomposition. Further experimental and theoretical characterizations demonstrate that (MoO3)1 within this material are thermally stable up to 500 K and remain chemically identical with a single empty gap state produced within the TiO2 band structure. Finally, we see that the constituent (MoO3)1 of this material show no proclivity for step and defect sites, suggesting they can reliably be grown on the (101) facet of TiO2 nanoparticles without compromising their chemistry.

3.
Angew Chem Int Ed Engl ; 63(17): e202319580, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38433092

RESUMO

Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000 g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.

4.
J Am Chem Soc ; 145(48): 26016-26027, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37976467

RESUMO

Proton transfer is critically important to many electrocatalytic reactions, and directed proton delivery could open new avenues for the design of electrocatalysts. However, although this approach has been successful in molecular electrocatalysis, proton transfer has not received the same attention in heterogeneous electrocatalyst design. Here, we report that a metal oxide proton relay can be built within heterogeneous electrocatalyst architectures and improves the kinetics of electrochemical hydrogen evolution and oxidation reactions. The volcano-type relationship between activity enhancement and pKa of amine additives confirms this improvement; we observe maximum rate enhancement when the pKa of a proton relay matches the pH of the electrolyte solution. Density-functional-theory-based reactivity studies reveal a decreased proton transfer energy barrier with a metal oxide proton relay. These findings demonstrate the possibility of controlling the proton delivery and enhancing the reaction kinetics by tuning the chemical properties and structures at heterogeneous interfaces.

5.
Chem Rev ; 120(20): 11370-11419, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32941005

RESUMO

Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?


Assuntos
Técnicas Eletroquímicas , Compostos Orgânicos/síntese química , Biomassa , Catálise , Eletrodos , Hidrogenação , Compostos Orgânicos/química
6.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33819019

RESUMO

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

7.
J Chem Phys ; 154(20): 204703, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241167

RESUMO

In catalysis, MgO is often used to modify the acid-base properties of support oxides and to stabilize supported metal atoms and particles on oxides. In this study, we show how the sublimation of MgO powder can be used to deposit MgO monomers, hither on anatase TiO2(101). A combination of x-ray electron spectroscopy, high-resolution scanning tunneling microscopy, and density functional theory is employed to gain insight into the MgO monomer binding, electronic and vibrational properties, and thermal stability. In the most stable configuration, the Mg and O of the MgO monomer bind to two surface oxygens and one undercoordinated surface titanium, respectively. The additional binding weakens the Mg-O monomer bond and makes Mg more ionic. The monomers are thermally stable up to 600 K, where the onset of diffusion into the TiO2 bulk is observed. The monomeric MgO species on TiO2(101) represent an ideal atomically precise system with modified acid-base properties and will be employed in our future catalytic studies.

8.
Angew Chem Int Ed Engl ; 60(42): 22769-22775, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34180114

RESUMO

The analogy between single-atom catalysts (SACs) and molecular catalysts predicts that the specific catalytic activity of these systems is constant. We provide evidence that this prediction is not necessarily true. As a case in point, we show that the specific activity over ceria-supported single Pd atoms linearly increases with metal atom density, originating from the cumulative enhancement of CeO2 reducibility. The long-range electrostatic footprints (≈1.5 nm) around each Pd site overlap with each other as surface Pd density increases, resulting in an observed deviation from constant specific activity. These cooperative effects exhaust previously active O atoms above a certain Pd density, leading to their permanent removal and a consequent drop in reaction rate. The findings of our combined experimental and computational study show that the specific catalytic activity of reducible oxide-supported single-atom catalysts can be tuned by varying the surface density of single metal atoms.

9.
Angew Chem Int Ed Engl ; 60(1): 290-296, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32770641

RESUMO

The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.

10.
Phys Chem Chem Phys ; 22(34): 19009-19021, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808606

RESUMO

Water-lean CO2 capture solvents show promise for more efficient and cost-effective CO2 capture, although their long-term behavior in operation has yet to be well studied. New observations of extended structure solvent behavior show that some solvent formulations transform into a glass-like phase upon aging at operating temperatures after contact with CO2. The glassification of a solvent would be detrimental to a carbon-capture process due to plugging of infrastructure, introducing a critical need to decipher the underlying principles of this phenomenon to prevent it from happening. We present the first integrated theoretical and experimental study to characterize the nano-structure of metastable and glassy states of an archetypal single-component alkanolguanidine carbon-capture solvent and assess how minute changes in atomic-level interactions convert the solvent between metastable and glass-like states. Small-angle neutron scattering and neutron diffraction coupled with small- and wide-angle X-ray scattering analysis demonstrate that minute structural changes in solution precipitae reversible aggregation of zwitterionic alkylcarbonate clusters in solution. Our findings indicate that our test system, an alkanolguanidine, exhibits a first-order phase transition, similar to a glass transition, at approximately 40 °C-close to the operating absorption temperature for post-combustion CO2 capture processes. We anticipate that these phenomena are not specific to this system, but are present in other classes of colvents as well. We discuss how molecular-level interactions can have vast implications for solvent-based carbon-capture technologies, concluding that fortunately in this case, glassification of water-lean solvents can be avoided as long as the solvent is run above its glass transition temperature.

11.
J Chem Phys ; 152(15): 154703, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321273

RESUMO

Supported single-atom catalysts (SACs) have gained increasing attention for improved catalytic activity and selectivity for industrially relevant reactions. In this study, we explore the hydrogenation of acetylene over single Pt, Ru, Rh, Pd, and Ir atoms supported on the Fe3O4(001) surface using density functional theory calculations. The thermodynamic profile of H diffusion is significantly modified by the type of single metal atoms used, suggesting that H spillover from the single atom dopant to the Fe3O4(001) surface is favored and will likely lead to high H coverages of the functioning catalyst. Correspondingly, as the surface H coverage increases, the important desorption step of ethylene becomes energetically competitive against the detrimental hydrogenation steps of ethylene to ethane. A kinetic model is employed to explore how the activity and selectivity of SACs toward ethylene production change as a function of mass of the catalyst loaded into a flow reactor. Overall, we show that the selectivity of SACs toward ethylene production can be tuned by considering the proper type of metal and controlling the redox state of the support.

12.
Angew Chem Int Ed Engl ; 59(4): 1501-1505, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31634416

RESUMO

Acid functionalization of a carbon support allows to enhance the electrocatalytic activity of Pd to hydrogenate benzaldehyde to benzyl alcohol proportional to the concentration of Brønsted-acid sites. In contrast, the hydrogenation rate is not affected when H2 is used as a reduction equivalent. The different responses to the catalyst properties are shown to be caused by differences in the hydrogenation mechanism between the electrochemical and the H2 -induced hydrogenation pathways. The enhancement of electrocatalytic reduction is realized by the participation of support-generated hydronium ions in the proximity of the metal particles.

13.
J Am Chem Soc ; 141(8): 3444-3455, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30698436

RESUMO

The catalytic sites of acidic zeolite are profoundly altered by the presence of water changing the nature of the Brønsted acid site. High-resolution solid-state NMR spectroscopy shows water interacting with zeolite Brønsted acid sites, converting them to hydrated hydronium ions over a wide range of temperature and thermodynamic activity of water. A signal at 9 ppm was observed at loadings of 2-9 water molecules per Brønsted acid site and is assigned to hydrated hydronium ions on the basis of the evolution of the signal with increasing water content, chemical shift calculations, and the direct comparison with HClO4 in water. The intensity of 1H-29Si cross-polarization signal first increased and then decreased with increasing water chemical potential. This indicates that hydrogen bonds between water molecules and the tetrahedrally coordinated aluminum in the zeolite lattice weaken with the formation of hydronium ion-water clusters and increase the mobility of protons. DFT-based ab initio molecular dynamics studies at multiple temperatures and water concentrations agree well with this interpretation. Above 140 °C, however, fast proton exchange between bridging hydroxyl groups and water occurs even in the presence of only one water molecule per acid site.

14.
Inorg Chem ; 58(5): 3033-3040, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30726070

RESUMO

Efficient regeneration of organolithium compounds is a challenging aspect in the process of novel organometathetical catalytic cycles. One of these catalytic cycles is a newly suggested method for Mg production from seawater that capitalizes on the rich chemistry of Grignard reagents. The proposed three-step catalytic cycle with Cp2 MCl L catalyst ( M = Ti, Zr; L = select organic ligands) requires the regeneration of nBuLi from Li(s), butene, and H2. The potential of this approach is evaluated with density functional theory-based molecular simulations. The results reveal that the high affinity of Li toward Cl and N results in the formation of alkanes, and the strong coupling between the catalyst and BuLi leads to catalyst deactivation. To improve its catalytic performance, we proposed the use of a diamine cocatalyst and a modified catalyst with a ligand that does not contain N, which would help release BuLi from the vicinity of the catalytic center. Ab initio molecular dynamics simulations at 298 K in explicit solvent (THF) were used to estimate the Gibbs free energetics and equilibrium constants obtained from the vibrational density of states using velocity autocorrelation functions. The results show a marked improvement in the free energetics with lower barriers toward the completion of the catalytic cycle and suppression of deactivation channels.

15.
Angew Chem Int Ed Engl ; 58(11): 3527-3532, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30556940

RESUMO

The thermodynamic state of H2 adsorbed on Pt in the aqueous phase was determined by kinetic analysis of H2 reacting with D2 O to HDO, HD, and D2 , and by DFT-based ab initio molecular dynamics simulations of H2 adsorption on Pt(111), Pt(110), and Pt nanoparticles. Dissociative adsorption of H2 on Pt is significantly weakened in the aqueous phase compared to adsorption at gas-solid interfaces. Water destabilizes the adsorbed H atoms, decreasing the heat of adsorption by 19-22 kJ m o l H 2 - 1 while inducing an additional entropy loss of 50-70 J m o l H 2 - 1 K-1 . Upon dissociative adsorption of H2 , the average distance of water from the Pt surface increases and the liquid adopts a structure that is more ordered than before close to the Pt surface, which limits the translation mobility of the adsorbed H atoms. The presence of hydrated hydronium ions next to the Pt surface further lowers the H-Pt bond strength.

17.
J Am Chem Soc ; 138(33): 10467-76, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27480512

RESUMO

We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations.

19.
Environ Sci Technol ; 48(15): 8612-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842544

RESUMO

First-principles molecular dynamics simulations were carried out to explore the mechanistic and thermodynamic ramifications of the exposure of variably hydrated Ca-rich montmorillonites to supercritical CO2 and CO2-SO2 mixtures under geologic storage conditions. In sub- to single-hydrated systems (≤ 1W), CO2 intercalation causes interlamellar expansion of 8-12%, while systems transitioning to 2W may undergo contraction (∼ 7%) or remain almost unchanged. When compared to ∼2W hydration state, structural analysis of the ≤ 1W systems, reveals more Ca-CO2 contacts and partial transition to vertically confined CO2 molecules. Infrared spectra and projected vibrational frequency analysis imply that intercalated Ca-bound CO2 are vibrationally constrained and contribute to the higher frequencies of the asymmetric stretch band. Reduced diffusion coefficients of intercalated H2O and CO2 (10(-6)-10(-7) cm(2)/s) indicate that Ca-montmorillonites in ∼ 1W hydration states can be more efficient in capturing CO2. Simulations including SO2 imply that ∼ 0.66 mmol SO2/g clay can be intercalated without other significant structural changes. SO2 is likely to divert H2O away from the cations, promoting Ca-CO2 interactions and CO2 capture by further reducing CO2 diffusion (10(-8) cm(2)/s). Vibrational bands at ∼ 1267 or 1155 cm(-1) may be used to identify the chemical state (oxidation states +4 or +6, respectively) and the fate of sulfur contaminants.


Assuntos
Silicatos de Alumínio/química , Bentonita/química , Dióxido de Carbono/química , Dióxido de Enxofre/química , Argila , Difusão , Geologia , Água/química
20.
J Chem Phys ; 140(5): 054301, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511934

RESUMO

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA