RESUMO
Curative therapies are most successful when cancer is diagnosed and treated at an early stage. We advocate that technological advances in next-generation sequencing of circulating, tumor-derived nucleic acids hold promise for addressing the challenge of developing safe and effective cancer screening tests.
Assuntos
DNA/sangue , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de DNA/métodos , Detecção Precoce de Câncer , HumanosRESUMO
Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry.
Assuntos
Redes Reguladoras de Genes , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Conjuntos de Dados como Assunto , Humanos , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/metabolismoRESUMO
How the T cell receptor (TCR)-CD3 complex activates T cells is debated. In this issue of Immunity, Brazin et al. (2018) propose that TCR engagement under force releases the CD3 signaling modules to disperse and adopt signaling active states.
Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta , Transdução de Sinais , Linfócitos TRESUMO
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and the GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surrounding the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Assuntos
Proteínas de Bactérias , Vibrio cholerae , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/química , Cristalografia por Raios X , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Ferro/metabolismo , Ferro/química , Nucleotídeos/metabolismo , Especificidade por SubstratoRESUMO
In this study, we evaluated the impact of viral variant, in addition to other variables, on within-host viral burden, by analysing cycle threshold (Ct) values derived from nose and throat swabs, collected as part of the UK COVID-19 Infection Survey. Because viral burden distributions determined from community survey data can be biased due to the impact of variant epidemiology on the time-since-infection of samples, we developed a method to explicitly adjust observed Ct value distributions to account for the expected bias. By analysing the adjusted Ct values using partial least squares regression, we found that among unvaccinated individuals with no known prior exposure, viral burden was 44% lower among Alpha variant infections, compared to those with the predecessor strain, B.1.177. Vaccination reduced viral burden by 67%, and among vaccinated individuals, viral burden was 286% higher among Delta variant, compared to Alpha variant, infections. In addition, viral burden increased by 17% for every 10-year age increment of the infected individual. In summary, within-host viral burden increases with age, is reduced by vaccination, and is influenced by the interplay of vaccination status and viral variant.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Viés de Seleção , SARS-CoV-2/genética , Carga Viral , COVID-19/epidemiologia , COVID-19/prevenção & controle , VacinaçãoRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1011461.].
RESUMO
The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-sensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , DNA Viral/imunologia , Células Dendríticas/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Chaperoninas/antagonistas & inibidores , Chaperoninas/genética , Chaperoninas/imunologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Citosol/virologia , DNA Viral/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Regulação da Expressão Gênica/imunologia , Inativação Gênica , HIV-1/fisiologia , Proteína HMGB2/genética , Proteína HMGB2/imunologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteômica , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Vesiculovirus/fisiologiaRESUMO
Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19) and for identifying asymptomatic carriage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The number of available SARS-CoV-2 nucleic acid detection tests continues to increase as does the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) developed an evidence-based diagnostic guideline to assist clinicians, clinical laboratorians, patients, and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss nuances of test result interpretation in a variety of practice settings, and highlight important unmet research needs related to COVID-19 diagnostic testing. IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel agreed on 12 diagnostic recommendations. Access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention, and the public health response to COVID-19 infection. Information on the clinical performance of available tests continues to grow, but the quality of evidence of the current literature to support this updated molecular diagnostic guideline remains moderate to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is suggested for asymptomatic individuals with known or suspected contact with a COVID-19 case when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions. Evidence in support of rapid testing and testing of upper respiratory specimens other than nasopharyngeal swabs, which offer logistical advantages, is sufficient to warrant conditional recommendations in favor of these approaches.
Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/normas , Teste de Ácido Nucleico para COVID-19/métodos , Estados Unidos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/métodos , Teste para COVID-19/métodos , Teste para COVID-19/normas , Técnicas de Amplificação de Ácido Nucleico/normas , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
Stroke is a leading cause of death in the United States across all race/ethnicity and sex groups, though disparities exist. We investigated the potential for primary prevention of total first stroke for Americans aged 20 and older, stratified by sex and race/ethnicity. Specifically, we calculated population attributable fractions (PAF) of first stroke for 7 potentially modifiable risk factors: smoking, physical inactivity, poor diet, obesity, hypertension, diabetes, and atrial fibrillation. PAFs are a function of (1) the relative risk of first stroke for people with the exposure and (2) the prevalence of the risk factor in the population. Relative risks came from recent meta-analyses and sex-race/ethnicity-specific prevalence estimates came from the 2015-2018 NHANES or Multi-Ethnic Study of Atherosclerosis (for atrial fibrillation only). Approximately 1/3 (35.7% [CI: 21.6%-49.0%]) for women, 32.7% [CI: 19.2%-45.1%] for men) of strokes were attributable to the 7 risk factors we considered. A 20% proportional reduction in stroke risk factors would result in approximately 37,000 fewer strokes annually in the United States. The estimated PAF was highest for non-Hispanic Black women (39.3% [CI: 24.8%-52.3%]) and lowest for non-Hispanic Asian men (25.5% [CI: 14.6%-36.2%]). For most groups, obesity and hypertension were the largest contributors to stroke rates.
RESUMO
Mycoplasma hominis and Ureaplasma species are urogenital mollicutes that can cause serious donor-derived infections in lung transplant recipients. Best practices for mollicute screening remain unknown. We conducted a single-center prospective study analyzing lung transplants performed from October 5, 2020, to September 25, 2021, whereby donor and recipient bronchoalveolar lavage (BAL) samples obtained at time of transplant underwent mollicute screening via culture and polymerase chain reaction (PCR). Of 115 total lung transplants performed, 99 (86%) donors underwent combined mollicute BAL culture and PCR testing. The study cohort included these 99 donors and their matched recipients. In total, 18 (18%) of 99 donors screened positive via culture or PCR. Among recipients, 92 (93%) of 99 had perioperative BAL screening performed, and only 3 (3%) had positive results. After transplant, 9 (9%) recipients developed mollicute infection. Sensitivity of donor screening in predicting recipient mollicute infection was 67% (6/9) via culture and 56% (5/9) via PCR. Positive predictive value for donor culture was 75% (6/8), compared with 33% (5/15) for PCR. Donor screening via culture predicted all serious recipient mollicute infections and had better positive predictive value than PCR; however, neither screening test predicted all mollicute infections. Independent of screening results, clinicians should remain suspicious for posttransplant mollicute infection.
RESUMO
Mollicute infections, caused by Mycoplasma and Ureaplasma species, are serious complications after lung transplantation; however, understanding of the epidemiology and outcomes of these infections remains limited. We conducted a single-center retrospective study of 1156 consecutive lung transplants performed from 2010-2019. We used log-binomial regression to identify risk factors for infection and analyzed clinical management and outcomes. In total, 27 (2.3%) recipients developed mollicute infection. Donor characteristics independently associated with recipient infection were age ≤40 years (prevalence rate ratio [PRR] 2.6, 95% CI 1.0-6.9), White race (PRR 3.1, 95% CI 1.1-8.8), and purulent secretions on donor bronchoscopy (PRR 2.3, 95% CI 1.1-5.0). Median time to diagnosis was 16 days posttransplant (IQR: 11-26 days). Mollicute-infected recipients were significantly more likely to require prolonged ventilatory support (66.7% vs 21.4%), undergo dialysis (44.4% vs 6.3%), and remain hospitalized ≥30 days (70.4% vs 27.4%) after transplant. One-year posttransplant mortality in mollicute-infected recipients was 12/27 (44%), compared to 148/1129 (13%) in those without infection (P <.0001). Hyperammonemia syndrome occurred in 5/27 (19%) mollicute-infected recipients, of whom 3 (60%) died within 10 weeks posttransplant. This study highlights the morbidity and mortality associated with mollicute infection after lung transplantation and the need for better screening and management protocols.
Assuntos
Transplante de Pulmão , Mycoplasma , Infecções por Ureaplasma , Humanos , Adulto , Estudos Retrospectivos , Infecções por Ureaplasma/epidemiologia , Infecções por Ureaplasma/etiologia , Infecções por Ureaplasma/diagnóstico , Transplante de Pulmão/efeitos adversos , Transplante de Pulmão/métodos , Fatores de RiscoRESUMO
We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.
Assuntos
Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Humanos , Genoma Bacteriano , Hospitais , Água Potável/microbiologia , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Masculino , Microbiologia da Água , Genômica , Feminino , Pessoa de Meia-Idade , Idoso , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , AdultoRESUMO
The eight-subunit T cell receptor (TCR)-CD3 complex is the primary determinant for T cell fate decisions. Yet how it relays ligand-specific information across the cell membrane for conversion to chemical signals remains unresolved. We hypothesized that TCR engagement triggers a change in the spatial relationship between the associated CD3ζζ subunits at the junction where they emerge from the membrane into the cytoplasm. Using three in situ proximity assays based on ID-PRIME, FRET, and EPOR activity, we determined that the cytosolic juxtamembrane regions of the CD3ζζ subunits are spread apart upon assembly into the TCR-CD3 complex. TCR engagement then triggered their apposition. This mechanical switch resides upstream of the CD3ζζ intracellular motifs that initiate chemical signaling, as well as the polybasic stretches that regulate signal potentiation. These findings provide a framework from which to examine triggering events for activating immune receptors and other complex molecular machines.
Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Complexo CD3/genética , Humanos , Hibridomas , Mecanotransdução Celular , Camundongos , Complexos Multiproteicos/genética , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Estrutura Terciária de Proteína/genética , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genéticaRESUMO
BACKGROUND: Understanding the factors that contribute to diagnostic errors is critical if we are to correct or prevent them. Some scholars influenced by the default interventionist dual-process theory of cognition (dual-process theory) emphasise a narrow focus on individual clinician's faulty reasoning as a significant contributor. In this paper, we examine the validity of claims that dual process theory is a key to error reduction. METHODS: We examined the relationship between a clinical experience (staff and resident physicians) and viewing time on accuracy for categorising chest X-rays (CXRs) and electrocardiograms (ECGs). In two studies, participants categorised images as normal or abnormal, presented at viewing times of 175, 250, 500 and 1000 ms, to encourage System 1 processing. Study 2 extended viewing times to 1, 5, 10 and 20 s to allow time for System 2 processing and a diagnosis. Descriptives and repeated measures analysis of variance were used to analyse the proportion of true and false positive rates (TP and FP) as well as correct diagnoses. RESULTS: In Study 1, physicians were able to detect abnormal CXRs (0.78) and ECGs (0.67) with relatively high accuracy. The effect of experience was found for ECGs only, as staff physicians (0.71, 95% CI = 0.66-0.75) had higher ECG TP than resident physicians (0.63, 95% CI = 0.58-0.68) in Study 1, and staff had lower ECG FP (0.10, 95% CI = 0.03-0.18) than resident physicians (0.27, 95% CI = 0.20-0.33) in Study 2. In other comparisons, experience was equivocal for ECG FPs and CXR TPs and FPs. In Study 2, overall diagnostic accuracy was similar for both ECGs and CXRs, (0.74). There were small interactions between experience and time for TP in ECGs and FP in CXRs, which are discussed further in the discussion and offer insights into the relationship between processing and experience. CONCLUSION: Overall, our findings raise concerns about the practical application of models that link processing type to diagnostic error, or to specific diagnostic error reduction strategies.
Assuntos
Competência Clínica , Erros de Diagnóstico , Eletrocardiografia , Humanos , Competência Clínica/normas , Erros de Diagnóstico/prevenção & controle , Fatores de Tempo , Radiografia TorácicaRESUMO
INTRODUCTION: Interviews are central to many qualitative studies in health professions education (HPE). However, researchers often struggle to elicit rich data and engage diverse participants who may find this strategy exclusionary. Elicitation techniques are strategies tailored to address these challenges, enhancing oral conversations through other forms of interaction-for example, participant photography and neighbourhood walks. These strategies are tailored to elicit the rich data needed to address complex problems and meaningfully engage participants. Unfortunately, guidance on these techniques is scattered across literatures from diverse fields. In this synthesis, we offer an overview of the elicitation techniques available and advice about how to choose between them. METHODS: We conducted an integrative review, drawing on methodological literature from across the health and social sciences. Our interdisciplinary searches yielded 3056 citations. We included 293 citations that were methodologically focused and discussed elicitation techniques used in interviews with adults. We then extracted specific elicitation techniques, summarising each technique to capture key features, as well as strengths and weaknesses. From this, we developed a framework to help researchers identify challenges in their interview-based research and to select elicitation techniques that address their challenges. RESULTS: To enrich data, researchers might seek to shift conversations away from participants' entrenched narratives, to externalise conversations on sensitive topics, or to elicit affect, tacit knowledge or contextual details. When empowering participants, researchers might seek to increase equity between the researcher and participant or foster interview accessibility across diverse participant populations. DISCUSSION: When chosen with study goals in mind, elicitation techniques can enrich interview data. To harness this potential, we need to re-conceptualise interviews as co-production of knowledge by researcher(s) and participant(s). To make interviews more equitable and accessible, we need to consider flexibility so that each participant can engage in ways that best suit their needs and preferences.
RESUMO
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Assuntos
Ascomicetos/genética , Variação Genética , Fatores Matadores de Levedura/genética , Saccharomycetales/genética , Ascomicetos/classificação , Ascomicetos/virologia , Evolução Molecular , Fluxo Gênico , Transferência Genética Horizontal , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/virologia , Saccharomyces cerevisiae/genética , Saccharomycetales/classificação , Saccharomycetales/virologia , Especificidade da Espécie , Totivirus/genéticaRESUMO
The cell cycle plays a key and complex role in the development of human cancers. p21 is a potent cyclin-dependent kinase inhibitor (CDKI) involved in the promotion of cell cycle arrest and the regulation of cellular senescence. Altered p21 expression in rectal cancer cells may affect tumor cells' behavior and resistance to neoadjuvant and adjuvant therapy. Our study aimed to ascertain the relationship between the differential expression of p21 in rectal cancer and patient survival outcomes. Using tissue microarrays, 266 rectal cancer specimens were immunohistochemically stained for p21. The expression patterns were scored separately in cancer cells retrieved from the center and the periphery of the tumor; compared with clinicopathological data, tumor regression grade (TRG), disease-free, and overall survival. Negative p21 expression in tumor periphery cells was significantly associated with longer overall survival upon the univariate (p = 0.001) and multivariable analysis (p = 0.003, HR = 2.068). Negative p21 expression in tumor periphery cells was also associated with longer disease-free survival in the multivariable analysis (p = 0.040, HR = 1.769). Longer overall survival times also correlated with lower tumor grades (p= 0.011), the absence of vascular and perineural invasion (p = 0.001; p < 0.005), the absence of metastases (p < 0.005), and adjuvant treatment (p = 0.009). p21 expression is a potential predictive and prognostic biomarker for clinical outcomes in rectal cancer patients. Negative p21 expression in tumor periphery cells demonstrated significant association with longer overall survival and disease-free survival. Larger prospective studies are warranted to investigate the ability of p21 to identify rectal cancer patients who will benefit from neoadjuvant and adjuvant therapy.
Assuntos
Neoplasias Retais , Humanos , Prognóstico , Neoplasias Retais/diagnóstico , Neoplasias Retais/terapia , Terapia Combinada , Adjuvantes Imunológicos , Adjuvantes FarmacêuticosRESUMO
PURPOSE: The retrograde femoral nailing advanced (RFNA) system (DePuy synthes) is a commonly used implant for the fixation of low distal femur and periprosthetic fractures. There is concern that the rate of distal interlock screw back-out may be higher for the RFNA compared to other nails (ON). The purpose of this study was to evaluate the incidence of interlock screw back-out and associated screw removal for RFNA versus ON, along with associated risk factors. METHODS: A retrospective comparative study of patients who underwent retrograde nailing for a distal femur fracture at an academic level one trauma center was performed. The incidence of distal interlock screw back-out and need for screw removal were compared for RFNA versus a propensity score matched cohort who received other nails. RESULTS: One hundred and ten patients underwent retrograde nailing with the RFNA for a distal femur fracture from 2015 to 2022 (average age: 66, BMI: 32, 52.7% smokers, 54.5% female, 61.8%). There was a significantly higher rate of interlock back-out in the RFNA group compared to the ON (27 patients, 24.5% vs 12 patients, 10.9%, p = 0.01), which occurred 6.3 weeks postoperatively. Screw removal rates for back-out were not significantly different for the RFNA group versus ON (8 patients, 7.3% vs 3 patients, 2.7%, p = 0.12). CONCLUSION: In this retrospective comparative study of distal femur fractures treated with retrograde nailing, the RFNA implant was associated with an increased risk of distal interlock screw back-out compared to other nails.
Assuntos
Pinos Ortopédicos , Parafusos Ósseos , Remoção de Dispositivo , Fraturas do Fêmur , Fixação Intramedular de Fraturas , Humanos , Feminino , Fraturas do Fêmur/cirurgia , Masculino , Estudos Retrospectivos , Idoso , Fixação Intramedular de Fraturas/instrumentação , Fixação Intramedular de Fraturas/métodos , Fixação Intramedular de Fraturas/efeitos adversos , Remoção de Dispositivo/estatística & dados numéricos , Remoção de Dispositivo/métodos , Pessoa de Meia-Idade , Fatores de Risco , Pontuação de Propensão , Fraturas Femorais DistaisRESUMO
BACKGROUND: Immunoassays designed to detect SARS-CoV-2 protein antigens (Ag) are commonly used to diagnose COVID-19. The most widely used tests are lateral flow assays that generate results in approximately 15â minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 Ag assays have also been developed. The number of commercially available SARS-CoV-2 Ag detection tests has increased rapidly, as has the COVID-19 diagnostic literature. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best practice guidance related to SARS-CoV-2 Ag testing. This guideline is an update to the third in a series of frequently updated COVID-19 diagnostic guidelines developed by the IDSA. OBJECTIVE: The IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and non-medical settings. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. A review of relevant, peer-reviewed published literature was conducted through April 1, 2022. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel made ten diagnostic recommendations. These recommendations address Ag testing in symptomatic and asymptomatic individuals and assess single versus repeat testing strategies. CONCLUSIONS: U.S. Food and Drug Administration (FDA) SARS-CoV-2 Ag tests with Emergency Use Authorization (EUA) have high specificity and low to moderate sensitivity compared to nucleic acid amplification testing (NAAT). Ag test sensitivity is dependent on the presence or absence of symptoms, and in symptomatic patients, on timing of testing after symptom onset. In contrast, Ag tests have high specificity, and, in most cases, positive Ag results can be acted upon without confirmation. Results of point-of-care testing are comparable to those of laboratory-based testing, and observed or unobserved self-collection of specimens for testing yields similar results. Modeling suggests that repeat Ag testing increases sensitivity compared to testing once, but no empirical data were available to inform this question. Based on these observations, rapid RT-PCR or laboratory-based NAAT remains the testing method of choice for diagnosing SARS-CoV-2 infection. However, when timely molecular testing is not readily available or is logistically infeasible, Ag testing helps identify individuals with SARS-CoV-2 infection. Data were insufficient to make a recommendation about the utility of Ag testing to guide release of patients with COVID-19 from isolation. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.
RESUMO
Research on the COVID-19 pandemic revealed a disproportionate burden of COVID-19 infection and death among underserved populations and exposed low rates of SARS-CoV-2 testing in these communities. A landmark National Institutes of Health (NIH) funding initiative, the Rapid Acceleration of Diagnostics-Underserved Populations (RADx-UP) program, was developed to address the research gap in understanding the adoption of COVID-19 testing in underserved populations. This program is the single largest investment in health disparities and community-engaged research in the history of the NIH. The RADx-UP Testing Core (TC) provides community-based investigators with essential scientific expertise and guidance on COVID-19 diagnostics. This commentary describes the first 2 years of the TC's experience, highlighting the challenges faced and insights gained to safely and effectively deploy large-scale diagnostics for community-initiated research in underserved populations during a pandemic. The success of RADx-UP shows that community-based research to increase access and uptake of testing among underserved populations can be accomplished during a pandemic with tools, resources, and multidisciplinary expertise provided by a centralized testing-specific coordinating center. We developed adaptive tools to support individual testing strategies and frameworks for these diverse studies and ensured continuous monitoring of testing strategies and use of study data. In a rapidly evolving setting of tremendous uncertainty, the TC provided essential and real-time technical expertise to support safe, effective, and adaptive testing. The lessons learned go beyond this pandemic and can serve as a framework for rapid deployment of testing in response to future crises, especially when populations are affected inequitably.