Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(26): 11442-11450, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479068

RESUMO

Colon cancer is one of the most common cancers with high mortality in humans. Early diagnosis and treatment of colon cancer is of great significance for cancer therapy. Numerous theranostic agents have been developed to detect and kill cancer cells. However, few reports have focused on how these agents control and affect the gene expression of cancer cells in vivo. Herein, three pyridinium-functionalized tetraphenylethylene derivatives, namely, TPE-OM, TPE-H, and TPE-NO2, with electron-donating and electron-withdrawing groups were facilely synthesized as theranostic agents for cell imaging and anticolon cancer therapy. Among these AIE luminogens (AIEgens), TPE-OM with donor and acceptor structure showed the best treatment efficacy for colon cancer through systematic biological evaluation and comparison. Both in vitro cell imaging and in vivo tumor treatment experiments demonstrated that TPE-OM can be utilized as an efficient theranostic agent to diagnose and kill colon cancer cells. Flow cytometric analysis revealed that the cell cycle process was disturbed by TPE-OM in colon cancer cells. Deep insight into the gene level revealed that the expressions of cell-cycle-promoting genes was inhibited upon addition of TPE-OM. This study may open a new venue for unraveling the mechanisms of cancer metastasis.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Elétrons , Corantes Fluorescentes/química , Estilbenos/química , Nanomedicina Teranóstica , Animais , Neoplasias do Colo/tratamento farmacológico , Teoria da Densidade Funcional , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica
2.
Br J Cancer ; 123(6): 1042-1044, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647365

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Br J Cancer ; 122(11): 1673-1685, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32225170

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are responsible for tumour initiation, metastasis and recurrence. However, the mechanism of CSC formation, maintenance and expansion in colorectal cancer (CRC) remains poorly characterised. METHODS: The role of COP9 signalosome subunit 6 (CSN6) in regulating cancer stemness was evaluated by organoid formation and limited dilution analysis. The role of CSN6-TRIM21-OCT1-ALDH1A1 axis in CSC formation was evaluated in vitro and in vivo. The association of CSN6, TRIM21 and ALDH1A1 expression was validated by a tissue microarray with 267 CRC patients. RESULTS: The results showed that CSN6 is critical for sphere formation and maintaining the growth of patient-derived organoids (PDOs). We characterised the role of CSN6 in regulating cancer stemness, which involves the TRIM21 E3 ubiquitin ligase, transcription factor POU class 2 homeobox 1 (OCT1) and cancer stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1). Our data showed that CSN6 facilitates ubiquitin-mediated degradation of TRIM21, which in turn decreases TRIM21-mediated OCT1 ubiquitination and subsequently stabilises OCT1. Consequently, OCT1 stabilisation leads to ALDH1A1expression and promotes cancer stemness. We further showed that the protein expression levels of CSN6, TRIM21 and ALDH1A1 can serve as prognostic markers for human CRC. CONCLUSIONS: In conclusion, we validate a pathway for cancer stemness regulation involving ALDH1A1 levels through the CSN6-TRIM21 axis, which may be utilised as CRC molecular markers and be targeted for therapeutic intervention in cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo do Signalossomo COP9/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Ribonucleoproteínas/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo
4.
Nutr Cancer ; 71(1): 149-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633592

RESUMO

This study evaluated the antitumor activity of the extracts of green husks of Juglans sigillata Dode on esophageal cancer. KYSE150 EC9706 cells were treated with different concentrations of six components of the extracts of J. sigillata green husks. Cell viability was measured by MTT. Cell migration and cell invasion were measured by wound-healing assays and transwell assays, respectively. Cell apoptosis and cycle were measured by flow cytometry. The expression of cell migration, cell cycle and cell apoptosis regulatory proteins was analyzed by Western blotting. Only the three constituents, including EtOH extractives, EtOAc soluble fraction and gallic acid (GA), exhibited inhibitory effects on the cell viability, migration and invasion by decreasing MMP2 and MMP9 expression (all P < 0.05). Flow cytometry revealed that these three constituents also induced cell apoptosis by increasing Bax and cleaved caspase-3 but decreasing Bcl-2 in KYSE150 and EC9706 cells. Furthermore, these constituents arrested the cell cycle at G0/G1 by downregulating the expression of Cyclin D1 but upregulating p53 and phospho-p53 expression in KYSE150 cells. In conclusion, the green husks of J. sigillata may act as a potential inhibitor on esophageal cancer growth. GA was the major single active constituent of the extracts.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Juglans , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Esofágicas/patologia , Ácido Gálico/farmacologia , Humanos
5.
Proc Natl Acad Sci U S A ; 109(24): E1513-22, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22611192

RESUMO

Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination-proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Aurora Quinase B , Aurora Quinases , Humanos , Interfase , Mitose , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteólise , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo , Transcrição Gênica , Ubiquitinação
6.
J Formos Med Assoc ; 114(8): 742-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24008153

RESUMO

BACKGROUND/PURPOSE: Nocardia are ubiquitous in the environment worldwide and cause a variety of infections. Clinical manifestations and outcomes of nocardiosis can vary with different populations, host immunity, and presentations. The purpose of this study was to analyze the differences in clinical characteristics, antimicrobial susceptibility, and outcomes for patients with skin, lung, and disseminated nocardiosis. METHODS: We conducted a retrospective survey of culture-proven nocardial infections in 81 patients with invasive nocardiosis over an 18-year period at the National Taiwan University Hospital. The clinical syndromes included skin infections (n = 44), localized pulmonary infections (n = 24), and disseminated infections (n = 13). RESULTS: Disseminated nocardiosis included lung and brain involvement (7 patients), brain and skin involvement (2 patients), localized brain abscess (1 patient), lung involvement with bacteremia (1 patient), lymphadenitis (1 patient), and liver cirrhosis with spontaneous nocardial peritonitis (1 patient). Eleven (14%) of all patients died due to nocardiosis. In comparison with those with skin infections, patients with lung and disseminated nocardiosis tended to have chronic lung disease, malignancy, concomitant bacteremia, were often misdiagnosed as having tuberculosis, were receiving immunosuppressive treatments, and demonstrated an increased mortality. Nocardia strains isolated from patients with lung infections or disseminated infections tended to have lower in vitro antimicrobial susceptibility than those isolated from skin infections [cefotaxime: 67% (lung) vs. 86% (skin); trimethoprim/sulfamethoxazole: 75% (disseminated) vs. 97% (skin)]. CONCLUSION: These results highlight the protean disease manifestations and antimicrobial susceptibility of Nocardia and indicate the need to address the option of combined antimicrobial therapy for lung and disseminated nocardiosis.


Assuntos
Bacteriemia/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Nocardiose/complicações , Nocardiose/diagnóstico , Nocardia/isolamento & purificação , Dermatopatias Bacterianas/tratamento farmacológico , Adulto , Idoso , Antibacterianos/uso terapêutico , Distribuição de Qui-Quadrado , Feminino , Humanos , Imunossupressores/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , Inquéritos e Questionários , Taiwan , Centros de Atenção Terciária , Resultado do Tratamento
7.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514606

RESUMO

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Humanos , Animais , Camundongos , Fosforilação , Transformação Celular Neoplásica/genética , Carcinogênese , Via de Sinalização Wnt , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Neoplasias Colorretais/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Adv Sci (Weinh) ; 11(14): e2306827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308184

RESUMO

Cholesterol metabolism has important roles in maintaining membrane integrity and countering the development of diseases such as obesity and cancers. Cancer cells sustain cholesterol biogenesis for their proliferation and microenvironment reprograming even when sterols are abundant. However, efficacy of targeting cholesterol metabolism for cancer treatment is always compromised. Here it is shown that CSN6 is elevated in HCC and is a positive regulator of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) of mevalonate (MVA) pathway to promote tumorigenesis. Mechanistically, CSN6 antagonizes speckle-type POZ protein (SPOP) ubiquitin ligase to stabilize HMGCS1, which in turn activates YAP1 to promote tumor growth. In orthotopic liver cancer models, targeting CSN6 and HMGCS1 hinders tumor growth in both normal and high fat diet. Significantly, HMGCS1 depletion improves YAP inhibitor efficacy in patient derived xenograft models. The results identify a CSN6-HMGCS1-YAP1 axis mediating tumor outgrowth in HCC and propose a therapeutic strategy of targeting non-alcoholic fatty liver diseases- associated HCC.


Assuntos
Carcinoma Hepatocelular , Hidroximetilglutaril-CoA Sintase , Neoplasias Hepáticas , Proteínas Repressoras , Proteínas de Sinalização YAP , Humanos , Carcinoma Hepatocelular/metabolismo , Colesterol/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo , Proteínas de Sinalização YAP/metabolismo
9.
BMC Gastroenterol ; 13: 67, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23590285

RESUMO

BACKGROUND: FGF21 is a promising intervention therapy for metabolic diseases as fatty liver, obesity and diabetes. Recent results suggest that FGF21 is highly expressed in hepatocytes under metabolic stress caused by starvation, hepatosteatosis, obesity and diabetes. Hepatic FGF21 elicits metabolic benefits by targeting adipocytes of the peripheral adipose tissue through the transmembrane FGFR1-KLB complex. Ablation of adipose FGFR1 resulted in increased hepatosteatosis under starvation conditions and abrogation of the anti-obesogenic action of FGF21. These results indicate that FGF21 may be a stress responsive hepatokine that targets adipocytes and adipose tissue for alleviating the damaging effects of stress on the liver. However, it is unclear whether hepatic induction of FGF21 is limited to only metabolic stress, or to a more general hepatic stress resulting from liver pathogenesis and injury. METHODS: In this survey-based study, we examine the nature of hepatic FGF21 activation in liver tissues and tissue sections from several mouse liver disease models and human patients, by quantitative PCR, immunohistochemistry, protein chemistry, and reporter and CHIP assays. The liver diseases include genetic and chemical-induced HCC, liver injury and regeneration, cirrhosis, and other types of liver diseases. RESULTS: We found that mouse FGF21 is induced in response to chemical (DEN treatment) and genetic-induced hepatocarcinogenesis (disruptions in LKB1, p53, MST1/2, SAV1 and PTEN). It is also induced in response to loss of liver mass due to partial hepatectomy followed by regeneration. The induction of FGF21 expression is potentially under the control of stress responsive transcription factors p53 and STAT3. Serum FGF21 levels correlate with FGF21 expression in hepatocytes. In patients with hepatitis, fatty degeneration, cirrhosis and liver tumors, FGF21 levels in hepatocytes or phenotypically normal hepatocytes are invariably elevated compared to normal health subjects. CONCLUSION: FGF21 is an inducible hepatokine and could be a biomarker for normal hepatocyte function. Activation of its expression is a response of functional hepatocytes to a broad spectrum of pathological changes that impose both cellular and metabolic stress on the liver. Taken together with our recent data, we suggest that hepatic FGF21 is a general stress responsive factor that targets adipose tissue for normalizing local and systemic metabolic parameters while alleviating the overload and damaging effects imposed by the pathogenic stress on the liver. This study therefore provides a rationale for clinical biomarker studies in humans.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Carcinoma Hepatocelular/induzido quimicamente , Transformação Celular Neoplásica/genética , Dietilnitrosamina , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Hepatócitos/metabolismo , Humanos , Proteínas Klotho , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Fator de Transcrição STAT3/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Gut Microbes ; 15(1): 2186114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941257

RESUMO

Probiotic roles of Clostridium butyricum (C.B) are involved in regulating disease and cancers, yet the mechanistic basis for these regulatory roles remains largely unknown. Here, we demonstrate that C.B reprograms the proliferation, migration, stemness, and tumor growth in CRC by regulating pivotal signal molecules including MYC. Destabilization of MYC by C.B supplementation suppresses cancer cell proliferation/metastasis, sensitizes 5-FU treatment, and boosts responsiveness of anti-PD1 therapy. MYC is a transcriptional regulator of Thymidylate synthase (TYMS), a key target of the 5-FU. Also MYC is known to impact on PD-1 expression. Mechanistically, C.B treatment of CRC cells results in MYC degradation by enhancing proteasome-mediated ubiquitination, thereby mitigating MYC-mediated 5-FU resistance and boosting anti-PD1 immunotherapeutic efficacy. Together, our findings uncover previously unappreciated links between C.B and CRC cell signaling, providing insight into the tumorigenesis modulating mechanisms of C.B in boosting chemo/immune therapies.


Assuntos
Clostridium butyricum , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
11.
Cell Rep ; 42(8): 112870, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494179

RESUMO

A hypoxic microenvironment contributes to tumor progression, with hypoxia-inducible factor-1α (HIF-1α) being a critical regulator. We have reported that 14-3-3σ is negatively associated with HIF-1α expression; however, its role in hypoxia-induced tumor progression remains poorly characterized. Here we show that 14-3-3σ suppresses cancer hypoxia-induced metastasis and angiogenesis in colorectal cancer (CRC). 14-3-3σ opposes HIF-1α expression by regulating the protein stability of HIF-1α, thereby decreasing HIF-1α transcriptional activity and suppressing tumor progression. Mechanistic studies show that the 14-3-3σ-interacting protein neural precursor cell-expressed developmentally down-regulated 4-like (NEDD4L) is an E3 ligase that targets HIF-1α. 14-3-3σ promotes the binding of S448-phosphorylated NEDD4L to HIF-1α, thereby enhancing HIF-1α poly-ubiquitination and subsequent proteasome-mediated degradation. Consistent with this anti-tumorigenic function for 14-3-3σ, low 14-3-3σ expression levels correlate with poor CRC patient survival, and 14-3-3σ enhances the response of CRC to bevacizumab. These results reveal an important mechanism for 14-3-3σ in tumor suppression through HIF-1α regulation.

12.
EBioMedicine ; 93: 104650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37343364

RESUMO

BACKGROUND: Pyrimidine nucleotides fuel the growth of colorectal cancer (CRC), making their associated proteins potential targets for cancer intervention. Uridine-Cytidine Kinase Like-1(UCKL1) is an enzyme involved in the pyrimidine salvage pathway. It is highly expressed in multiple cancers. But the function and underlying mechanism of UCKL1 in CRC are yet to study. METHODS: Large-scale genomic analysis was performed to search for potential CRC players related to pyrimidine metabolism. The function of UCKL1 in CRC were examined by RNA interference coupled with in vitro and in vivo assays. GSH/GSSG assay, NADP+ assay, ROS, and Lipid peroxidation assays were performed to check the function of UCKL1 in ferroptosis. Metabolomics analyses, RNA sequencing, western blotting, and rescue assays were done to reveal the underlying mechanisms of UCKL1. Xenograft mouse model was used to examine the therapeutic potential of UCKL1 as a target in combination with other ferroptosis inducers. FINDINGS: UCKL1 was identified to repress ferroptosis in CRC cells. It was highly expressed in CRC. It regulated CRC cells proliferation and migration. Downregulation of UCKL1 led to enhanced tumour lipid peroxidation. Intriguingly, UCKL1 reduction-mediated ferroptosis was not related to its role in catalyzing uridine monophosphate (UMP) and cytidine monophosphate (CMP) synthesis. Instead, UCKL1 stabilized Nrf2, which in turn promoted the expression of SLC7A11, a classical repressor of ferroptosis. Moreover, downregulation of UCKL1 sensitized CRC cells to GPX4 inhibitors in vitro and in vivo. INTERPRETATION: Our study demonstrates that UCKL1 plays a non-canonical role in repressing ferroptosis through a UCKL1-Nrf2-SLC7A11 axis in CRC cells. Combinatorial strategy in targeting ferroptosis by depletion of UCKL1 and application of GPX4 inhibitors may serve as a new effective method for CRC treatment. FUNDING: This study was supported in part by fund from National Natural Science Foundation of China (Grant No. 31970674 to PY), by the Basic and Applied Basic Research Program of Guangdong Province (Grant No. 2023A1515030245 to KL), by the program of Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004), and by National Key Clinical Discipline.


Assuntos
Neoplasias Colorretais , Fator 2 Relacionado a NF-E2 , Humanos , Animais , Camundongos , Fator 2 Relacionado a NF-E2/genética , Bioensaio , Proliferação de Células , Modelos Animais de Doenças , Neoplasias Colorretais/genética , Pirimidinas
13.
Nat Commun ; 14(1): 4193, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443154

RESUMO

Gastric cancer (GC), one of the most common malignant tumors in the world, exhibits a rapid metastasis rate and causes high mortality. Diagnostic markers and potential therapeutic targets for GCs are urgently needed. Here we show that Actin-like protein 6 A (ACTL6A), encoding an SWI/SNF subunit, is highly expressed in GCs. ACTL6A is found to be critical for regulating the glutathione (GSH) metabolism pathway because it upregulates γ-glutamyl-cysteine ligase catalytic subunit (GCLC) expression, thereby reducing reactive oxygen species (ROS) levels and inhibiting ferroptosis, a regulated form of cell death driven by the accumulation of lipid-based ROS. Mechanistic studies show that ACTL6A upregulates GCLC as a cotranscription factor with Nuclear factor (erythroid-derived 2)-like 2 (NRF2) and that the hydrophobic region of ACTL6A plays an important role. Our data highlight the oncogenic role of ACTL6A in GCs and indicate that inhibition of ACTL6A or GCLC could be a potential treatment strategy for GCs.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Ferroptose/genética , Fatores de Transcrição , Glutationa , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Actinas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo
14.
Cancer Res ; 83(3): 414-427, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512632

RESUMO

Metabolic reprogramming can contribute to colorectal cancer progression and therapy resistance. Identification of key regulators of colorectal cancer metabolism could provide new approaches to improve treatment and reduce recurrence. Here, we demonstrate a critical role for the COP9 signalosome subunit CSN6 in rewiring nucleotide metabolism in colorectal cancer. Transcriptomic analysis of colorectal cancer patient samples revealed a correlation between CSN6 expression and purine and pyrimidine metabolism. A colitis-associated colorectal cancer model established that Csn6 intestinal conditional deletion decreased tumor development and altered nucleotide metabolism. CSN6 knockdown increased the chemosensitivity of colorectal cancer cells in vitro and in vivo, which could be partially reversed with nucleoside supplementation. Isotope metabolite tracing showed that CSN6 loss reduced de novo nucleotide synthesis. Mechanistically, CSN6 upregulated purine and pyrimidine biosynthesis by increasing expression of PHGDH, a key enzyme in the serine synthesis pathway. CSN6 inhibited ß-Trcp-mediated DDX5 polyubiquitination and degradation, which in turn promoted DDX5-mediated PHGDH mRNA stabilization, leading to metabolic reprogramming and colorectal cancer progression. Butyrate treatment decreased CSN6 expression and improved chemotherapy efficacy. These findings unravel the oncogenic role of CSN6 in regulating nucleotide metabolism and chemosensitivity in colorectal cancer. SIGNIFICANCE: CSN6 deficiency inhibits colorectal cancer development and chemoresistance by downregulating PHGDH to block nucleotide biosynthesis, providing potential therapeutic targets to improve colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Pirimidinas , Nucleotídeos , RNA Helicases DEAD-box
15.
Adv Sci (Weinh) ; 10(27): e2300759, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544925

RESUMO

Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7ß-mediated PHGDH ubiquitination through GSK3ß deactivation, and eIF3f antagonizes FBXW7ß-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Fator de Crescimento Epidérmico , Serina
16.
Signal Transduct Target Ther ; 8(1): 187, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202390

RESUMO

Continuous de novo fatty acid synthesis is required for the biosynthetic demands of tumor. FBXW7 is a highly mutated gene in CRC, but its biological functions in cancer are not fully characterized. Here, we report that FBXW7ß, a FBXW7 isoform located in the cytoplasm and frequently mutated in CRC, is an E3 ligase of fatty acid synthase (FASN). Cancer-specific FBXW7ß mutations that could not degrade FASN can lead to sustained lipogenesis in CRC. COP9 signalosome subunit 6 (CSN6), an oncogenic marker of CRC, increases lipogenesis via interacting with and stabilizing FASN. Mechanistic studies show that CSN6 associates with both FBXW7ß and FASN, and antagonizes FBXW7ß's activity by enhancing FBXW7ß autoubiquitination and degradation, which in turn prevents FBXW7ß-mediated FASN ubiquitination and degradation, thereby regulating lipogenesis positively. Both CSN6 and FASN are positively correlated in CRC, and CSN6-FASN axis, regulated by EGF, is responsible for poor prognosis of CRC. The EGF-CSN6-FASN axis promotes tumor growth and implies a treatment strategy of combination of orlistat and cetuximab. Patient-derived xenograft experiments prove the effectiveness of employing orlistat and cetuximab combination in suppressing tumor growth for CSN6/FASN-high CRC. Thus, CSN6-FASN axis reprograms lipogenesis to promote tumor growth and is a target for cancer intervening strategy in CRC.


Assuntos
Neoplasias Colorretais , Lipogênese , Humanos , Cetuximab , Neoplasias Colorretais/genética , Fator de Crescimento Epidérmico , Proteína 7 com Repetições F-Box-WD/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintases/genética , Lipogênese/genética , Orlistate
17.
Proc Natl Acad Sci U S A ; 106(41): 17493-8, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805145

RESUMO

Metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is widely upregulated in human cancers. However, the mechanism for regulating its protein stability remains unknown. Here we report that MTA1 is an ubiquitinated protein and targeted by the RING-finger E3 ubiquitin-protein ligase constitutive photomorphogenesis protein 1 (COP1) for degradation via the ubiquitin-proteasome pathway. Induced expression of wild-type COP1 but not its RING motif mutants promotes the ubiquitination and degradation of MTA1, indicating that the ligase activity is required for the COP1-mediated proteolysis of MTA1. Conversely, depletion of endogenous COP1 resulted in a marked decrease in MTA1 ubiquitination, accompanied by a pronounced accumulation of MTA1 protein. MTA1, in turn, destabilizes COP1 by promoting its autoubiquitination, thus creating a tight feedback loop that regulates both MTA1 and COP1 protein stability. Accordingly, disruption of the COP1-mediated proteolysis by ionizing radiation leads to MTA1 stabilization, accompanied by an increased coregulatory function of MTA1 on its target. Furthermore, we discovered that MTA1 is required for optimum DNA double-strand break repair after ionizing radiation. These findings provide novel insights into the regulation of MTA1 protein and reveal a novel function of MTA1 in DNA damage response.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Dano ao DNA , Reparo do DNA , Estabilidade Enzimática , Fibroblastos/citologia , Fibroblastos/fisiologia , Histona Desacetilases/química , Histona Desacetilases/efeitos da radiação , Humanos , Camundongos , Proteínas Nucleares/genética , Radiação Ionizante , Proteínas Repressoras/química , Proteínas Repressoras/efeitos da radiação , Transativadores , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
18.
Metabolites ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629914

RESUMO

Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3'-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.

19.
Cell Discov ; 8(1): 130, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473865

RESUMO

Chromodomain helicase DNA binding protein (CHD) family plays critical roles in regulating gene transcription. The family is linked to cancer disease, but the family member's role in tumorigenesis remains largely unknown. Here, we report that CHD6 is highly expressed in colorectal cancer (CRC). CHD6 knockdown inhibited cancer cell proliferation, migration, invasion, and tumorigenesis. Consistently, Villin-specific Chd6 knockout in mice attenuates cancer formation in AOM/DSS model. We found that aberrant EGF signals promoted the stability of CHD6 by diminishing ubiquitin-mediated degradation. EGF signal inhibits GSK3ß activity, which in turn prevents phosphodegron formation of CHD6, thereby hindering E3 ligase FBXW7-mediated CHD6 ubiquitination and degradation. CHD6's chromatin remodeler activity engages in binding Wnt signaling transcription factor TCF4 to facilitate the transcriptional expression of TMEM65, a mitochondrial inner membrane protein involved in ATP production and mitochondrial dynamics. In addition, Wnt signaling is also an upstream regulator of CHD6. CHD6 promoter contains TCF4 and ß-catenin binding site, and CHD6 can be transcriptionally activated by Wnt ligand to facilitate TMEM65 transcription. Thus CHD6-TMEM65 axis can be regulated by both EGF and Wnt signaling pathways through two different mechanisms. We further illustrate that CHD6-TMEM65 axis is deregulated in cancer and that co-administration of Wnt inhibitor LGK974 and the anti-EGFR monoclonal antibody cetuximab largely restricted the growth of patient-derived xenografts of CRC. Targeting CHD6-TMEM65 axis may be effective for cancer intervention.

20.
Oncogene ; 41(36): 4231-4243, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35906392

RESUMO

Altered expression of Urea Cycle (UC) enzymes occurs in many tumors, resulting a metabolic hallmark termed as UC dysregulation. Polyamines are synthesized from ornithine, and polyamine synthetic genes are elevated in various tumors. However, the underlying deregulations of UC/ polyamine synthesis in cancer remain elusive. Here, we characterized a hypoxia-induced lncRNA LVBU (lncRNA regulation via BCL6/urea cycle) that is highly expressed in colorectal cancer (CRC) and correlates with poor cancer prognosis. Increased LVBU expression promoted CRC cells proliferation, foci formation and tumorigenesis. Further, LVBU regulates urea cycle and polyamine synthesis through BCL6, a negative regulator of p53. Mechanistically, overexpression of LVBU competitively bound miR-10a/miR-34c to protect BCL6 from miR-10a/34c-mediated degradation, which in turn allows BCL6 to block p53-mediated suppression of genes (arginase1 ARG1, ornithine transcarbamylase OTC, ornithine decarboxylase 1 ODC1) involved in UC/polyamine synthesis. Significantly, ODC1 inhibitor attenuated the growth of patient derived xenografts (PDX) that sustain high LVBU levels. Taken together, elevated LVBU can regulate BCL6-p53 signaling axis for systemic UC/polyamine synthesis reprogramming and confers a predilection toward CRC development. Our data demonstrates that further drug development and clinical evaluation of inhibiting UC/polyamine synthesis are warranted for CRC patients with high expression of LVBU.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Neoplasias Colorretais/patologia , Humanos , Poliaminas/metabolismo , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA