Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(3): 1399-1408, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33332964

RESUMO

Developing efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER) in alkaline water electrolysis plays a key role for renewable hydrogen energy technology. The slow reaction kinetics of HER in alkaline solutions, however, has hampered advances in high-performance hydrogen production. Herein, we investigated the trends in HER activity with respect to the binding energies of Ni-based thin film catalysts by incorporating a series of oxophilic transition metal atoms. It was found that the doping of oxophilic atoms enables the modulation of binding abilities of hydrogen and hydroxyl ions on the Ni surfaces, leading to the first establishment of a volcano relation between OH-binding energies and alkaline HER activities. In particular, Cr-incorporated Ni catalyst shows optimized OH-binding as well as H-binding energies for facilitating water dissociation and improving HER activity in alkaline media. Further enhancement of catalytic performance was achieved by introducing an array of three-dimensional (3D) Ni nanohelixes (NHs) that provide abundant surface active sites and effective channels for charge transfer and mass transport. The Cr dopants incorporated into the Ni NHs accelerate the dissociative adsorption process of water, resulting in remarkably enhanced catalytic activities in alkaline medium. Our approach can provide a rational design strategy and experimental methodology toward efficient bimetallic electrocatalysts for alkaline HER using earth-abundant elements.

2.
Adv Mater ; 35(52): e2305844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641945

RESUMO

Despite the adverse effects of H2 bubbles adhering to catalyst's surface on the performance of water electrolysis, the mechanisms by which H2 bubbles are effectively released during the alkaline hydrogen evolution reaction (HER) remain elusive. In this study, a systematic investigation on the effect of nanoscale surface morphologies on H2 bubble release behaviors and HER performance by employing earth-abundant Ni catalysts consisting of an array of Ni nanorods (NRs) with controlled surface porosities is performed. Both aerophobicity and hydrophilicity of the catalyst's surface vary according to the surface porosity of catalysts. The Ni catalyst with the highest porosity of ≈52% exhibits superaerophobic nature as well as the best HER performance among the Ni catalysts. It is found that the Ni catalyst's superaerophobicity combined with the effective open pore channels enables the accelerated release of H2 bubbles from the surface, leading to a significant improvement in geometric activities, particularly at high current densities, as well as intrinsic activities including both specific and mass activities. It is also demonstrated that the superaerophobicity enabled by highly porous Ni NRs can be combined with Pt and Cr having optimal binding abilities to further optimize electrocatalytic performance.

3.
ACS Appl Bio Mater ; 3(11): 7687-7695, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019508

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are promising materials for detection of biomolecules due to their large surface-to-volume ratio. However, their poor response to the cellular environment hinders the realization of high-performance 2D TMDC sensors. Here, we present a hierarchical Raman scattering sensor consisting of the WS2 directly grown on an array of three-dimensional (3D) WO3 nanohelixes (NHs) by sulfurization. Both the adsorption of biomolecules and the proliferation of cells are significantly promoted for the 3D WS2/WO3 NH sensor compared to the control sensor with sulfurized WS2 on 2D WO3 film, leading to much enhanced sensitivity to dopamine. In addition, according to the in vitro test using PC12 cells, the 3D WS2/WO3 NH sensor shows a significant increase in hydrophobicity and Raman frequency shift, indicating that both the attachment of cells and the detection of biomolecules are improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA