RESUMO
Cherry blossom (Prunus yedoensis) petals are used as ingredients in many cosmetics. However, despite their use in numerous products, the exact function of cherry blossom petals in cosmetics is unclear. Therefore, we need evidence-based studies to support the labeling claims that are made in cherry blossom products in the cosmetics industry. We investigated the skin anti-aging potential of non-enzymatic softening cherry blossom extract (NES-CBE) in this study. The extract desalinated, to improve its quality such that it can be used as a functional material for the skin. The anti-wrinkle effect of NES-CBE was investigated on human keratinocytes (HaCaT cells) under solar UV (sUV) light exposure. We found that NES-CBE reduced the sUV-induced matrix metalloproteinase (MMP)-1 expression and modulated the transactivation of the activator protein (AP)-1. Furthermore, NES-CBE suppressed the phosphorylation of MEK1/2 and ERK proteins, indicating its regulation of sUV-induced MAPK signaling. Additionally, we observed NES-CBE reduced MMP-1 protein expression in a human skin equivalent model. Taken together, these results suggest that NES-CBE reduces sUV-induced MMP-1 protein expression through reducing AP-1 transactivation via regulation of the MEK1/2-ERK pathway.
RESUMO
The anti-skin inflammatory activities of rose petal extracts have been described in our previous study. Because skin inflammation is closely linked to skin aging, our study investigated the effects of Rosa gallica petals on skin aging-related activities such as skin whitening and anti-wrinkle properties. Each sample was prepared via extraction using different ethanol ratios with the objective of evaluationg optimal extraction conditions for industrial application. Aqueous 50% (v/v) EtOH extract of R. gallica petal significantly suppressed tyrosinase activity, melanin production, and solar UV-induced matrix metalloproteinase-1, a hall mark of wrinkle formation. In addition, the aqueous 50% (v/v) EtOH extract showed the highest antioxidative effect and had highest flavonoid contents, consistent with the reported anti-aging effects. Overall, our findings suggest that R. gallica petals extracts exhibit anti-aging effects. Furthermore, 50% EtOH extraction, in particular, was optimal for the highest anti-aging, and anti-oxidative effects as well as to obtain the highest flavonoid content.
RESUMO
The aim of this study was to investigate the skin anti-inflammatory activity of rose petal extract (RPE) and the mechanisms underlying this phenomenon. Recently, flowers have been considered as dietary resources owing to their biological activities, such as inhibition of nephritis and hemorrhoids. The Rosa plant exerts various biological functions, including antioxidant and anti-microbiological activities. Herein, we confirmed the skin anti-inflammatory activity of RPE upon solar UV (sUV) exposure. RPE reduced sUV-induced COX-2 expression as well as expressions of several cytokines. Activation of MKK4-JNK, MEK-ERK, and MKK3-p38 signaling pathways, which are associated with cytokine production, was also attenuated by RPE treatment. We hypothesized these RPE-induced changes are because of its antioxidant activity, because RPE displayed drastic radical scavenging and oxygen radical absorbance capacity (ORAC). Furthermore, high anthocyanins, polyphenols, and flavonoids contents were found in RPE. Hence, these results indicated the skin anti-inflammatory activity of RPE is because of antioxidant activity.
RESUMO
Atopic dermatitis (AD) is characterized by chronic highly pruritic and relapsing inflammatory skin lesions. Despite its growing prevalence, therapeutic treatments remain limited. Natural immune modulators from herbal extracts or derivatives may be useful for treating AD symptoms. This study examined the effect of 7,8,4'-trihydroxyisoflavone (7,8,4'-THIF), a metabolite of soy isoflavone daidzin, on AD-like symptoms. Repeated epicutaneous application of 2,4-dinitrochlorobenzene (DNCB) was performed on the ear and dorsal skin of NC/Nga mice to induce AD-like symptoms and skin lesions, and 7,8,4'-THIF (200 and 400 nmol) or tacrolimus (100 µg) was applied topically for 3 weeks to assess their anti-pruritic effects. We found that 7,8,4'-THIF alleviated DNCB-induced AD-like symptoms as quantified by skin lesion, dermatitis score, ear thickness, and scratching behavior. Histopathological analysis demonstrated that 7,8,4'-THIF decreased DNCB-induced eosinophil and mast cell infiltration into skin lesions. We also found that 7,8,4'-THIF significantly alleviated DNCB-induced loss of water through the epidermal layer. In addition to reducing the DNCB-induced increase in serum IgE, 7,8,4'-THIF also lowered skin lesion levels of the chemokine thymus and activation regulated chemokine; Th2 cytokines interleukin (IL)-4, IL-5, and IL-13; and Th1 cytokines IL-12 and interferon-γ. These results suggest that 7,8,4'-THIF might be a potential therapeutic candidate for the treatment of atopic dermatitis.