Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410816, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990712

RESUMO

Covalent organic frameworks (COFs) have emerged as versatile materials with many applications, such as carbon capture, molecular separation, catalysis, and energy storage. Traditionally, flexible building blocks have been avoided due to their potential to disrupt ordered structures. Recent studies have demonstrated intriguing properties and enhanced structural diversity achievable with flexible components by judicious selection of building blocks. This study presents a novel series of ionic COFs (ICOFs) consisting of tetraborate nodes and flexible linkers. These ICOFs use borohydrides to irreversibly deprotonate the alcohol monomers to achieve a high polymerization degree. Structural analysis confirms the dia topologies. Reticulation is explored using various monomers and metal counter-ions. Also, these frameworks exhibit excellent stability in alcohols and coordinating solvents. The materials are tested as single-ion conductive solid-state electrolytes. ICOF-203-Li displays one of the lowest activation energies reported for ion conduction. This tetraborate chemistry is anticipated to facilitate further structural diversity and functionality in crystalline polymers.

2.
Curr Issues Mol Biol ; 45(1): 286-310, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661507

RESUMO

Ototoxicity is the drug-induced damage of the inner ear, causing bilateral irreversible sensorineural hearing loss. Cisplatin is a widely used chemotherapeutic agent which causes ototoxicity as its side effect. Pretreatment with metformin prior to the application of cisplatin significantly decreased the late apoptosis and attenuated the cisplatin-induced increase in ROS. To understand the molecular mechanisms that are involved in the preventive effect of metformin, we evaluated the change of gene expression induced by cisplatin at several different time points (0 h, 6 h, 15 h, 24 h and 48 h) and the alteration of gene expression according to pretreatment with metformin in HEI-OC1 cells through microarray analysis. Cisplatin exposure induced a total of 89 DEGs (differentially expressed genes) after 6 h, with a total of 433 DEGs after 15 h, a total of 941 DEGs after 24 h, and a total of 2764 DEGs after 48 h. When cells were pretreated with metformin for 24 h, we identified a total of 105 DEGs after 6 h of cisplatin exposure, a total of 257 DEGs after 15 h, a total of 1450 DEGs after 24 h, and a total of 1463 DEGs after 48 h. The analysis was performed based on the gene expression, network analyses, and qRT-PCR, and we identified several genes (CSF2, FOS, JUN, TNFα, NFκB, Txnip, ASK1, TXN2, ATF3, TP53, IL6, and IGF1) as metformin-related preventive biomarkers in cisplatin ototoxicity.

3.
Angew Chem Int Ed Engl ; 59(46): 20385-20389, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32722860

RESUMO

All-solid-state lithium ion batteries (LIBs) are ideal for energy storage given their safety and long-term stability. However, there is a limited availability of viable electrode active materials. Herein, we report a truxenone-based covalent organic framework (COF-TRO) as cathode materials for all-solid-state LIBs. The high-density carbonyl groups combined with the ordered crystalline COF structure greatly facilitate lithium ion storage via reversible redox reactions. As a result, a high specific capacity of 268 mAh g-1 , almost 97.5 % of the calculated theoretical capacity was achieved. To the best of our knowledge, this is the highest capacity among all COF-based cathode materials for all-solid-state LIBs reported so far. Moreover, the excellent cycling stability (99.9 % capacity retention after 100 cycles at 0.1 C rate) shown by COF-TRO suggests such truxenone-based COFs have great potential in energy storage applications.

4.
J Am Chem Soc ; 141(18): 7518-7525, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30986353

RESUMO

Ionic covalent organic frameworks (ICOFs) have recently emerged as promising candidates for solid-state electrolytes. Herein, we report the first example of a series of crystalline imidazolate-containing ICOFs as single-ion conducting COF solid electrolyte materials, where lithium cations freely travel through the intrinsic channels with outstanding ion conductivity (up to 7.2 × 10-3 S cm-1) and impressively low activation energy (as low as 0.10 eV). These properties are attributed to the weak Li ion-imidazolate binding interactions and well-defined porous 2D framework structures of such ICOFs. We also investigated the structure-property relationship by varying the electronic properties of substituents (electron donating/withdrawing) that covalently attached to the imidazolate groups. We found electron-withdrawing substituents significantly improve the ion-conducting ability of imidazolate-ICOF by weakening ion-pair interactions. Our study provides a convenient bottom-up approach toward a novel class of highly efficient single-ion conducting ICOFs which could be used in all solid-state electrolytic devices.

5.
J Nanosci Nanotechnol ; 18(9): 6410-6414, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677805

RESUMO

Nanoparticles and nanofluids have been implemented in energy harvesting devices, and energy harvesting based on magnetic nanofluid flow was recently achieved by using a layer-built magnet and micro-bubble injection to induce a voltage on the order of 10-1 mV. However, this is not yet suitable for some commercial purpose. In order to further increase the amount of electric voltage and current from this energy harvesting the air bubbles must be segmented in the base fluid, and the magnetic flux of the segmented flow should be materially altered over time. The focus of this research is on the development of a segmented ferrofluid flow linear generator that would scavenge electrical power from waste heat. Experiments were conducted to obtain the induced voltage, which was generated by moving a ferrofluid-filled capsule inside a multi-turn coil. Computations were then performed to explain the fundamental physical basis of the motion of the segmented flow of the ferrofluids and the air-layers.

6.
Angew Chem Int Ed Engl ; 57(10): 2630-2634, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365213

RESUMO

All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na4 C6 O6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g-1 ) and one of the highest specific energies (395 Wh kg-1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4 C6 O6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na4 C6 O6 as both cathode and anode materials.

7.
Nanotechnology ; 28(7): 075205, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094242

RESUMO

Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

8.
Angew Chem Int Ed Engl ; 55(5): 1737-41, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26696304

RESUMO

A novel type of ionic covalent organic framework (ICOF), which contains sp(3)  hybridized boron anionic centers and tunable countercations, was constructed by formation of spiroborate linkages. These ICOFs exhibit high BET surface areas up to 1259 m(2) g(-1) and adsorb a significant amount of H2 (up to 3.11 wt %, 77 K, 1 bar) and CH4 (up to 4.62 wt %, 273 K, 1 bar). Importantly, the materials show good thermal stabilities and excellent resistance to hydrolysis, remaining nearly intact when immersed in water or basic solution for two days. The presence of permanently immobilized ion centers in ICOFs enables the transportation of lithium ions with room-temperature lithium-ion conductivity of 3.05×10(-5)  S cm(-1) and an average Li(+) transference number value of 0.80±0.02. Our approach thus provides a convenient route to highly stable COFs with ionic linkages, which can potentially serve as absorbents for alternative energy sources such as H2, CH4, and also as solid lithium electrolytes/separators for the next-generation lithium batteries.

9.
Nanotechnology ; 26(36): 365401, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26289444

RESUMO

Doped Si nanoparticles (SiNPs) with conformal carbon coating and cyclized-polyacrylonitrile (PAN) network displayed capacities of 3500 and 3000 mAh g(-1) at C/20 and C/10, respectively. At 1 C, the electrode preserves a specific discharge capacity of ∼1500 mAh g(-1) for at least 60 cycles without decay. Al2O3 atomic layer deposition (ALD) helps improve the initial Coulombic efficiency (CE) to 85%. The dual coating of conformal carbon and cyclized-PAN help alleviate volume change and facilitate charge transfer. Ultra-thin Al2O3 ALD layers help form a stable solid electrolyte interphase interface.

10.
Connect Tissue Res ; 55(2): 147-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24409813

RESUMO

Abstract It is very well known that spinal meninges are composed of three layers, dura, arachnoid and pia mater, and that the main components of pia mater are collagen and reticular fibers. However, the distribution of those fibers has not been extensively investigated but just described as a mesh of fibers. In this study, we detected novel structures, which are composed of unidirectionally arranged fibers, in a rat spinal pia mater by using a polarized light microscope. They were seen as three parallel lines, one of which ran along a posterior spinal vein and the rest two of which ran along a pair of posterior spinal arteries. Histological analysis including Masson's trichrome, picrosirius-red staining, Gordon & Sweet's staining and immunohistochemistry with anti-collagen type 1 and 3 antibodies uncovered that they are mainly composed of collagen fibers and some reticular fibers. In addition, a putative primo vessel was detected in the novel fibrous tissue, which was proven out to be different from a blood vessel. In conclusion, we report a newly detected fibrous structure in the spinal pia mater, which may contribute to provide tensile force to the spinal meninges and to harbor the primo vascular system inside.


Assuntos
Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Tecido Elástico/metabolismo , Pia-Máter , Medula Espinal , Animais , Masculino , Microscopia de Polarização/métodos , Pia-Máter/irrigação sanguínea , Pia-Máter/citologia , Pia-Máter/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/irrigação sanguínea , Medula Espinal/citologia , Medula Espinal/metabolismo
11.
Nutrients ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732587

RESUMO

Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 µg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.


Assuntos
Interleucina-12 , Células Matadoras Naturais , Probióticos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Duplo-Cego , Temperatura Alta , Sistema Imunitário , Imunidade Inata , Imunoglobulina A/sangue , Células Matadoras Naturais/imunologia , Lactobacillus plantarum , Probióticos/administração & dosagem
12.
Mol Plant Pathol ; 24(6): 602-615, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977203

RESUMO

Fungal effectors play a pivotal role in suppressing the host defence system, and their evolution is highly dynamic. By comparative sequence analysis of plant-pathogenic fungi and Magnaporthe oryzae, we identified the small secreted C2 H2 zinc finger protein MoHTR3. MoHTR3 exhibited high conservation in M. oryzae strains but low conservation among other plant-pathogenic fungi, suggesting an emerging evolutionary selection process. MoHTR3 is exclusively expressed in the biotrophic stage of fungal invasion, and the encoded protein localizes to the biotrophic interfacial complex (BIC) and the host cell nucleus. The signal peptide crucial for MoHTR3' secretion to the BIC and the protein section required for its translocation to the nucleus were both identified by a functional protein domain study. The host-nuclear localization of MoHTR3 suggests a function as a transcriptional modulator of host defence gene induction. After ΔMohtr3 infection, the expression of jasmonic acid- and ethylene-associated genes was diminished in rice, in contrast to when the MoHTR3-overexpressing strain (MoHTR3ox) was applied. The transcript levels of salicylic acid- and defence-related genes were also affected after ΔMohtr3 and MoHTR3ox application. In pathogenicity assays, ΔMohtr3 was indistinguishable from the wild type. However, MoHTR3ox-infected plants showed diminished lesion formation and hydrogen peroxide accumulation, accompanied by a decrease in susceptibility, suggesting that the MoHTR3-induced manipulation of host cells affects host-pathogen interaction. MoHTR3 emphasizes the role of the host nucleus as a critical target for the pathogen-driven manipulation of host defence mechanisms and underscores the ongoing evolution of rice blast's arms race.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Núcleo Celular/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia
13.
Mol Biol Rep ; 39(6): 6781-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22302392

RESUMO

Free fatty acid-induced pancreatic ß-cell dysfunction plays a key role in the pathogenesis of type 2 diabetes. We conducted gene expression microarray analysis to comprehensively investigate the transcription machinery of palmitate-regulated genes in pancreatic ß-cells in vitro. In particular, mouse pancreatic ßTC3 cells were treated with palmitate in the presence or absence of cycloheximide (CHX), which blocks protein synthesis and thereby allows us to distinguish immediate early genes (IEGs) from their target genes. The microarray experiments identified 34 palmitate-regulated IEGs and 74 palmitate-regulated target genes. In silico promoter analysis revealed that transcription factor binding sites for NF-κB were over-represented, regulating approximately one-third of the palmitate-regulated target genes. In cells treated with CHX, nfkb1 showed an up-regulation by palmitate, suggesting that NF-κB could be an IEG. Functional enrichment analysis of 27 palmitate-regulated genes with NF-κB binding sites showed an over-representation of genes involved in immune response, inflammatory response, defense response, taxis, regulation of cell proliferation, and regulation of cell death pathways. Electrophoretic mobility shift assay showed that palmitate stimulates NF-κB activity both in the presence and absence of CHX. In conclusion, by identifying IEGs and target genes, the present study depicted a comprehensive view of transcription machinery underlying palmitate-induced inflammation and cell proliferation/death in pancreatic ß-cells and our data demonstrated the central role of NF-κB.


Assuntos
Genes Precoces , Células Secretoras de Insulina/metabolismo , NF-kappa B/fisiologia , Palmitatos/farmacologia , Animais , Sítios de Ligação , Células Cultivadas , Cicloeximida/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas
14.
Nano Lett ; 11(2): 414-8, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21166425

RESUMO

To deploy Li-ion batteries in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Here we report a breakthrough in controlled full-electrode nanoscale coatings that enables nanosized materials to cycle with durable high energy and remarkable rate performance. The nanoparticle electrodes are coated with Al(2)O(3) using atomic layer deposition (ALD). The coated nano-LiCoO(2) electrodes with 2 ALD cycles deliver a discharge capacity of 133 mAh/g with currents of 1400 mA/g (7.8C), corresponding to a 250% improvement in reversible capacity compared to bare nanoparticles (br-nLCO), when cycled at this high rate. The simple ALD process is broadly applicable and provides new opportunities for the battery industry to design other novel nanostructured electrodes that are highly durable even while cycling at high rate.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletrodos , Membranas Artificiais , Nanoestruturas/química , Nanotecnologia/instrumentação , Óxidos/química , Automóveis , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula
15.
J Am Chem Soc ; 133(37): 14741-54, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21797223

RESUMO

Passivating lithium ion (Li) battery electrode surfaces to prevent electrolyte decomposition is critical for battery operations. Recent work on conformal atomic layer deposition (ALD) coating of anodes and cathodes has shown significant technological promise. ALD further provides well-characterized model platforms for understanding electrolyte decomposition initiated by electron tunneling through a passivating layer. First-principles calculations reveal two regimes of electron transfer to adsorbed ethylene carbonate molecules (EC, a main component of commercial electrolyte), depending on whether the electrode is alumina coated. On bare Li metal electrode surfaces, EC accepts electrons and decomposes within picoseconds. In contrast, constrained density functional theory calculations in an ultrahigh vacuum setting show that, with the oxide coating, e(-) tunneling to the adsorbed EC falls within the nonadiabatic regime. Here the molecular reorganization energy, computed in the harmonic approximation, plays a key role in slowing down electron transfer. Ab initio molecular dynamics simulations conducted at liquid EC electrode interfaces are consistent with the view that reactions and electron transfer occur right at the interface. Microgravimetric measurements demonstrate that the ALD coating decreases electrolyte decomposition and corroborates the theoretical predictions.

16.
Analyst ; 136(8): 1557-61, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21321782

RESUMO

In the present communication, a novel composite nanofibrous electrode is developed for the detection of superoxide anion (O(2)˙(-)) in phosphate buffered saline (PBS). The composite fiber electrode is fabricated by dispersing gold nanoparticles onto poly(methyl methacrylate) (PMMA)-polyaniline (PANI) core-shell electrospun nanofibers. The constructed architecture is proven to be a favorable environment for the immobilization of the enzyme, superoxide dismutase (SOD). Direct electron transfer is achieved between SOD and the electrode with an electron transfer rate constant of 8.93 s(-1). At an applied potential of +300 mV, PMMA/PANI-Au(nano)/SOD-ESCFM shows highly sensitive detection of O(2)˙(-). In addition to this, quantification of different activities of SOD is realized at PMMA/PANI-Au(nano)/SOD-ESCFM. These analytical features offer great potential for construction of the third-generation O(2)˙(-) biosensor.


Assuntos
Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Polimetil Metacrilato/química , Superóxidos/análise , Técnicas Biossensoriais/métodos , Eletrodos , Transporte de Elétrons , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo
17.
Polymers (Basel) ; 13(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451288

RESUMO

In an HVDC environment, space charge accumulated in polymeric insulators causes severe electric field distortion and degradation of breakdown strength. To analyze the breakdown characteristics, here, the space charge distribution was numerically evaluated using the bipolar charge transport (BCT) model, considering the temperature gradient inside the polymeric insulator. In particular, we proposed an electro-mechanical threshold energy condition, resulting in the modified molecular chain displacement model. The temperature gradient accelerates to reduce the breakdown strength with the polarity-reversal voltage, except during the harshest condition, when the temperature of the entire polymeric insulator was 70 °C. The energy imbalance inside the insulator caused by polarity-reversal voltage reduced the breakdown strength by 82%. Finally, this numerical analysis model can be used universally to predict the breakdown strength of polymeric insulators in various environments, and help in evaluating the electrical performance of polymeric insulators.

18.
Front Microbiol ; 12: 721530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899620

RESUMO

The myeloblastosis (MYB) transcription factor family is evolutionarily conserved among plants, animals, and fungi, and contributes to their growth and development. We identified and analyzed 10 putative MYB genes in Magnaporthe oryzae (MoMYB) and determined their phylogenetic relationships, revealing high divergence and variability. Although MYB domains are generally defined by three tandem repeats, MoMYBs contain one or two weakly conserved repeats embedded in extensive disordered regions. We characterized the secondary domain organization, disordered segments, and functional contributions of each MoMYB. During infection, MoMYBs are distinctively expressed and can be subdivided into two clades of being either up- or down-regulated. Among these, MoMYB1 and MoMYB8 are up-regulated during infection and vegetative growth, respectively. We found MoMYB1 localized predominantly to the cytosol during the formation of infection structures. ΔMomyb1 exhibited reduced virulence on intact rice leaves corresponding to the diminished ability to form hypha-driven appressorium (HDA). We discovered that MoMYB1 regulates HDA formation on hard, hydrophobic surfaces, whereas host surfaces partially restored HDA formation in ΔMomyb1. Lipid droplet accumulation in hyphal tips and expression of HDA-associated genes were strongly perturbed in ΔMomyb1 indicating genetic interaction of MoMYB1 with downstream components critical to HDA formation. We also found that MoMYB8 is necessary for fungal growth, dark-induced melanization of hyphae, and involved in higher abiotic stress tolerance. Taken together, we revealed a multifaceted picture of the MoMYB family, wherein a low degree of conservation has led to the development of distinct structures and functions, ranging from fungal growth to virulence.

19.
Chemphyschem ; 11(10): 2124-30, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20449864

RESUMO

An alumina surface coating is demonstrated to improve electrochemical performance of MoO(3) nanoparticles as high capacity/high-volume expansion anodes for Li-ion batteries. Thin, conformal surface coatings were grown using atomic layer deposition (ALD) that relies on self-limiting surface reactions. ALD coatings were tested on both individual nanoparticles and prefabricated electrodes containing conductive additive and binder. The coated and non-coated materials were characterized using transmission electron microscopy, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, and galvanostatic charge/discharge cycling. Importantly, increased stability and capacity retention was only observed when the fully fabricated electrode was coated. The alumina layer both improves the adhesion of the entire electrode, during volume expansion/contraction and protects the nanoparticle surfaces. Coating the entire electrode also allows for an important carbothermal reduction process that occurs during electrode pre-heat treatment. ALD is thus demonstrated as a novel and necessary method that may be employed to coat the tortuous network of a battery electrode.

20.
Transl Vis Sci Technol ; 9(4): 1, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818089

RESUMO

Purpose: Continuous monitoring of elevated intraocular pressure and timely drug delivery for successful treatment of glaucoma are necessary to reduce intraocular pressure (IOP), which shows wide variations across the circadian pattern and in response to medication. This in vivo study presents a new contact lens-based method of optical IOP measurement or temperature-triggered drug elution. Methods: A contact lens with moiré patterns of concentric circles measures the changes in eyeball diameter of a rabbit glaucoma model due to changes in IOP by superimposing a camera-captured image onto the micro pattern of the contact lens with a computer-assisted virtual reference image. Drug elution from the nanoporous bicontinuous microemulsion contact lens (BME-CL) into the eye of the rabbit was triggered by a temperature-responsive nanogel drug carrier. Results: The moiré pattern change on the contact lens was proportional to the IOP increase in the rabbit eye either ex vivo or in vivo and was also correlated with imaging-based alterations in the anterior chamber angle at a range of IOP values (3-40 mm Hg). The cumulative drug absorbed reached as high as 10.6 µg/mL aqueous humor until 7 days after wearing the BME-CL, and a 33% decrease in IOP was observed at 3 hours after drug elution. Conclusions: The results suggest that continuous measurement and treatment of elevated IOP are feasible using moiré pattern-inscribed and thermosensitive drug-eluting contact lenses, respectively. Translational Relevance: Pressure-sensing or thermosensitive contact lenses enable monitoring IOP or drug release triggered by body temperature for the treatment of glaucoma patients.


Assuntos
Lentes de Contato , Tonometria Ocular , Animais , Liberação Controlada de Fármacos , Humanos , Pressão Intraocular , Coelhos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA