Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 766-778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126886

RESUMO

The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.

2.
Nat Microbiol ; 3(7): 804-813, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29891866

RESUMO

Nitrogen fixation in the surface ocean impacts global marine nitrogen bioavailability and thus microbial primary productivity. Until now, cyanobacterial populations have been viewed as the main suppliers of bioavailable nitrogen in this habitat. Although PCR amplicon surveys targeting the nitrogenase reductase gene have revealed the existence of diverse non-cyanobacterial diazotrophic populations, subsequent quantitative PCR surveys suggest that they generally occur in low abundance. Here, we use state-of-the-art metagenomic assembly and binning strategies to recover nearly one thousand non-redundant microbial population genomes from the TARA Oceans metagenomes. Among these, we provide the first genomic evidence for non-cyanobacterial diazotrophs inhabiting surface waters of the open ocean, which correspond to lineages within the Proteobacteria and, most strikingly, the Planctomycetes. Members of the latter phylum are prevalent in aquatic systems, but have never been linked to nitrogen fixation previously. Moreover, using genome-wide quantitative read recruitment, we demonstrate that the discovered diazotrophs were not only widespread but also remarkably abundant (up to 0.3% of metagenomic reads for a single population) in both the Pacific Ocean and the Atlantic Ocean northwest. Our results extend decades of PCR-based gene surveys, and substantiate the importance of heterotrophic bacteria in the fixation of nitrogen in the surface ocean.


Assuntos
Metagenômica/métodos , Fixação de Nitrogênio , Planctomycetales/isolamento & purificação , Proteobactérias/isolamento & purificação , Oceano Atlântico , Proteínas de Bactérias/genética , Oxirredutases/genética , Oceano Pacífico , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Microbiologia da Água
3.
Nat Microbiol ; 3(8): 963, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30042441

RESUMO

In the version of this Article originally published, the surname of author Sandra M. McLellan was spelt incorrectly as 'MacLellan'. This has now been corrected. In addition, Fig. 2 was mistakenly duplicated in the Supplementary Information as Supplementary Fig. 2. This has now been replaced with the correct supplementary figure (shown below).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA