Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 9804-9820, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650646

RESUMO

All cells employ a combination of endo- and exoribonucleases to degrade long RNA polymers to fragments 2-5 nucleotides in length. These short RNA fragments are processed to monoribonucleotides by nanoRNases. Genetic depletion of nanoRNases has been shown to increase abundance of short RNAs. This deleteriously affects viability, virulence, and fitness, indicating that short RNAs are a metabolic burden. Previously, we provided evidence that NrnA is the housekeeping nanoRNase for Bacillus subtilis. Herein, we investigate the biological and biochemical functions of the evolutionarily related protein, B. subtilis NrnB (NrnBBs). These experiments show that NrnB is surprisingly different from NrnA. While NrnA acts at the 5' terminus of RNA substrates, NrnB acts at the 3' terminus. Additionally, NrnA is expressed constitutively under standard growth conditions, yet NrnB is selectively expressed during endospore formation. Furthermore, NrnA processes only short RNAs, while NrnB unexpectedly processes both short RNAs and longer RNAs. Indeed, inducible expression of NrnB can even complement the loss of the known global 3'-5' exoribonucleases, indicating that it acts as a general exonuclease. Together, these data demonstrate that NrnB proteins, which are widely found in Firmicutes, Epsilonproteobacteria and Archaea, are fundamentally different than NrnA proteins and may be used for specialized purposes.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Exorribonucleases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Fosfodiesterase I , RNA/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(50): e2209383119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469780

RESUMO

Healthcare-associated infections are major causes of complications that lead to extended hospital stays and significant medical costs. The use of medical devices, including catheters, increases the risk of bacterial colonization and infection through the presence of a foreign surface. Two outcomes are observed for catheterized patients: catheter-associated asymptomatic bacteriuria and catheter-associated urinary tract infection (CAUTI). However, the relationship between these two events remains unclear. To understand this relationship, we studied a murine model of Pseudomonas aeruginosa CAUTI. In this model, we also observe two outcomes in infected animals: acute symptoms that is associated with CAUTI and chronic colonization that is associated with asymptomatic bacteriuria. The timing of the acute outcome takes place in the first week of infection, whereas chronic colonization occurs in the second week of infection. We further showed that mutants lacking genes encoding type III secretion system (T3SS), T3SS effector proteins, T3SS injection pore, or T3SS transcriptional activation all fail to cause acute symptoms of CAUTI. Nonetheless, all mutants defective for T3SS colonized the catheter and bladders at levels similar to the parental strain. In contrast, through induction of the T3SS master regulator ExsA, all infected animals showed acute phenotypes with bacteremia. Our results demonstrated that the acute symptoms, which are analogous to CAUTI, and chronic colonization, which is analogous to asymptomatic bacteriuria, are independent events that require distinct bacterial virulence factors. Experimental delineation of asymptomatic bacteriuria and CAUTI informs different strategies for the treatment and intervention of device-associated infections.


Assuntos
Bacteriúria , Infecções Urinárias , Camundongos , Animais , Pseudomonas aeruginosa/genética , Bacteriúria/complicações , Infecções Urinárias/microbiologia , Sistemas de Secreção Tipo III , Catéteres/efeitos adversos
3.
J Bacteriol ; 206(1): e0036123, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38047680

RESUMO

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen responsible for a subset of catheter-associated urinary tract infections (CAUTI). In a murine model of P. aeruginosa CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Doudoroff (E-D) pathway. The E-D pathway consists of the genes zwf, pgl, edd, and eda. Zwf and Pgl convert glucose-6-phosphate into 6-phosphogluconate. Edd hydrolyzes 6-phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate (KDPG). Finally, Eda cleaves KDPG to glyceraldehyde-3-phosphate and pyruvate, which enters the citric acid cycle. Here, we generated in-frame E-D mutants in the strain PA14 and assessed their growth phenotypes on chemically defined and complex media. These E-D mutants have a growth defect when grown on glucose or gluconate as the sole carbon source, which is similar to results previously reported for PAO1 mutants lacking E-D genes. RNA-sequencing following short exposure to urine revealed minimal gene regulation differences compared to the wild type. In a murine CAUTI model, virulence testing of E-D mutants revealed that two mutants lacking zwf and pgl showed minor fitness defects. Infection with the ∆pgl strain exhibited a 20% increase in host survival, and the ∆zwf strain displayed decreased colonization of the catheter and kidneys. Consequently, our findings suggest that the E-D pathway in P. aeruginosa is dispensable in this model of CAUTI. IMPORTANCE Prior studies have shown that the Entner-Doudoroff pathway is up-regulated when Pseudomonas aeruginosa is grown in urine. Pseudomonads use the Entner-Doudoroff (E-D) pathway to metabolize glucose instead of glycolysis, which led us to ask whether this pathway is required for urinary tract infection. Here, single-deletion mutants of each gene in the pathway were tested for growth on chemically defined media with single-carbon sources as well as complex media. The effect of each mutant on global gene expression in laboratory media and urine was characterized. The virulence of these mutants in a murine model of catheter-associated urinary tract infection revealed that these mutants had similar levels of colonization indicating that glucose is not the primary carbon source utilized in the urinary tract.


Assuntos
Gluconatos , Infecções por Pseudomonas , Infecções Urinárias , Animais , Camundongos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Catéteres , Carbono
4.
Nucleic Acids Res ; 50(21): 12369-12388, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36478094

RESUMO

Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA). Yet, the catalytic mechanism, cellular roles and physiologically relevant substrates have not been fully resolved for NrnA proteins. We herein utilized a common set of reaction assays to directly compare substrate preferences exhibited by NrnA-like proteins from Bacillus subtilis, Enterococcus faecalis, Streptococcus pyogenes and Mycobacterium tuberculosis. While the M. tuberculosis protein specifically cleaved cyclic di-adenosine monophosphate, the B. subtilis, E. faecalis and S. pyogenes NrnA-like proteins uniformly exhibited striking preference for short RNAs between 2-4 nucleotides in length, all of which were processed from their 5' terminus. Correspondingly, deletion of B. subtilis nrnA led to accumulation of RNAs between 2 and 4 nucleotides in length in cellular extracts. Together, these data suggest that many Firmicutes NrnA-like proteins are likely to resemble B. subtilis NrnA to act as a housekeeping enzyme for processing of RNAs between 2 and 4 nucleotides in length.


Assuntos
Exonucleases , Firmicutes , RNA , Proteínas de Bactérias/metabolismo , Exonucleases/química , Nucleotídeos , RNA/metabolismo , Firmicutes/química , Firmicutes/classificação , Firmicutes/enzimologia
5.
Nucleic Acids Res ; 50(2): 847-866, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967415

RESUMO

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica
6.
PLoS Genet ; 16(6): e1008897, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32589664

RESUMO

The LonA (or Lon) protease is a central post-translational regulator in diverse bacterial species. In Vibrio cholerae, LonA regulates a broad range of behaviors including cell division, biofilm formation, flagellar motility, c-di-GMP levels, the type VI secretion system (T6SS), virulence gene expression, and host colonization. Despite LonA's role in cellular processes critical for V. cholerae's aquatic and infectious life cycles, relatively few LonA substrates have been identified. LonA protease substrates were therefore identified through comparison of the proteomes of wild-type and ΔlonA strains following translational inhibition. The most significantly enriched LonA-dependent protein was TfoY, a known regulator of motility and the T6SS in V. cholerae. Experiments showed that TfoY was required for LonA-mediated repression of motility and T6SS-dependent killing. In addition, TfoY was stabilized under high c-di-GMP conditions and biochemical analysis determined direct binding of c-di-GMP to LonA results in inhibition of its protease activity. The work presented here adds to the list of LonA substrates, identifies LonA as a c-di-GMP receptor, demonstrates that c-di-GMP regulates LonA activity and TfoY protein stability, and helps elucidate the mechanisms by which LonA controls important V. cholerae behaviors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Cólera/microbiologia , GMP Cíclico/análogos & derivados , Protease La/antagonistas & inibidores , Vibrio cholerae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Mutação , Protease La/genética , Protease La/isolamento & purificação , Protease La/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteólise , Proteômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Virulência/genética
7.
J Biol Chem ; 294(44): 16020-16033, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506295

RESUMO

Many bacteria and some archaea produce the second messenger cyclic diadenosine monophosphate (c-di-AMP). c-di-AMP controls the uptake of osmolytes in Firmicutes, including the human pathogen Listeria monocytogenes, making it essential for growth. c-di-AMP is known to directly regulate several potassium channels involved in osmolyte transport in species such as Bacillus subtilis and Streptococcus pneumoniae, but whether this same mechanism is involved in L. monocytogenes, or even whether similar ion channels were present, was not known. Here, we have identified and characterized the putative L. monocytogenes' potassium transporters KimA, KtrCD, and KdpABC. We demonstrate that Escherichia coli expressing KimA and KtrCD, but not KdpABC, transport potassium into the cell, and both KimA and KtrCD are inhibited by c-di-AMP in vivo For KimA, c-di-AMP-dependent regulation requires the C-terminal domain. In vitro assays demonstrated that the dinucleotide binds to the cytoplasmic regulatory subunit KtrC and to the KdpD sensor kinase of the KdpDE two-component system, which in Staphylococcus aureus regulates the corresponding KdpABC transporter. Finally, we also show that S. aureus contains a homolog of KimA, which mediates potassium transport. Thus, the c-di-AMP-dependent control of systems involved in potassium homeostasis seems to be conserved in phylogenetically related bacteria. Surprisingly, the growth of an L. monocytogenes mutant lacking the c-di-AMP-synthesizing enzyme cdaA is only weakly inhibited by potassium. Thus, the physiological impact of the c-di-AMP-dependent control of potassium uptake seems to be less pronounced in L. monocytogenes than in other Firmicutes.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Potássio/metabolismo , Proteínas de Bactérias/química , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Domínios Proteicos , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31061098

RESUMO

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação
9.
Proc Natl Acad Sci U S A ; 114(26): E5236-E5245, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607054

RESUMO

Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3',5')-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain-containing regulatory proteins found in complex eukaryotes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , GMP Cíclico/análogos & derivados , Consórcios Microbianos/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Fenazinas/farmacologia
10.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745376

RESUMO

Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Ligação Proteica
11.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249708

RESUMO

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3'-to-5' exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilisnrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides.IMPORTANCE The bacterial bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3'-to-5' exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


Assuntos
Bacillus anthracis/enzimologia , GMP Cíclico/análogos & derivados , Exorribonucleases/metabolismo , Vibrio cholerae/enzimologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Exorribonucleases/genética , Hidrólise , Mutação , Pseudomonas aeruginosa/enzimologia , Sistemas do Segundo Mensageiro , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 112(36): E5048-57, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305945

RESUMO

The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Nucleotídeos de Desoxiguanina/metabolismo , Exorribonucleases/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cromatografia Líquida , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleases/genética , Guanosina Monofosfato/metabolismo , Homeostase , Hidrólise , Dados de Sequência Molecular , Mutação , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
13.
J Bacteriol ; 199(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242722

RESUMO

The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium.IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium perfringens/enzimologia , Clostridium perfringens/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Fímbrias/metabolismo , Oxirredutases/metabolismo , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/isolamento & purificação , Dicroísmo Circular , Coenzimas/metabolismo , GMP Cíclico/metabolismo , Oxirredutases/isolamento & purificação , Ligação Proteica , Conformação Proteica , Zinco/metabolismo
14.
PLoS Pathog ; 11(10): e1005232, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506097

RESUMO

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP.


Assuntos
Adenosina Trifosfatases/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Fímbrias/metabolismo , Sistemas de Secreção Tipo II/fisiologia , Vibrio cholerae/metabolismo , GMP Cíclico/metabolismo , Fímbrias Bacterianas/fisiologia , Lectina de Ligação a Manose/metabolismo , Fases de Leitura Aberta
15.
J Bacteriol ; 198(1): 91-7, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26195591

RESUMO

UNLABELLED: Bis-(3'-5') cyclic dimeric GMP (c-di-GMP) controls the lifestyle transition between the sessile and motile states in many Gram-negative bacteria, including the opportunistic human pathogen Pseudomonas aeruginosa. Under laboratory conditions, high concentrations of c-di-GMP decrease motility and promote biofilm formation, while low concentrations of c-di-GMP promote motility and decease biofilm formation. Here we sought to determine the contribution of c-di-GMP signaling to biofilm formation during P. aeruginosa-mediated catheter-associated urinary tract infection (CAUTI). Using a murine CAUTI model, a decrease in CFU was detected in the bladders and kidneys of mice infected with strains overexpressing the phosphodiesterases (PDEs) encoded by PA3947 and PA2133 compared to those infected with wild-type P. aeruginosa. Conversely, overexpression of the diguanylate cyclases (DGCs) encoded by PA3702 and PA1107 increased the number of bacteria in bladder and significantly increased dissemination of bacteria to the kidneys compared to wild-type infection. To determine which of the DGCs and PDEs contribute to c-di-GMP signaling during infection, a panel of PA14 in-frame deletion mutants lacking DGCs and PDEs were tested in the CAUTI model. Results from these infections revealed five mutants, three containing GGDEF domains (ΔPA14_26970, ΔPA14_72420, and ΔsiaD) and two containing dual GGDEF-EAL domains (ΔmorA and ΔPA14_07500), with decreased colonization of the bladder and dissemination to the kidneys. These results indicate that c-di-GMP signaling influences P. aeruginosa-mediated biofilms during CAUTI. IMPORTANCE: Biofilm-based infections are an important cause of nosocomial infections, since they resist the immune response and traditional antibiotic treatment. Cyclic di-GMP (c-di-GMP) is a second messenger that promotes biofilm formation in many Gram-negative pathogens, including Pseudomonas aeruginosa. Here we determined the contribution of c-di-GMP signaling to catheter-associated urinary tract infection (CAUTI), an animal model of biofilm-based infection. P. aeruginosa with elevated levels of c-di-GMP during the initial infection produces an increased bacterial burden in the bladder and kidneys. Conversely, low concentrations of c-di-GMP decreased the bacterial burden in the bladder and kidneys. We screened a library of mutants with mutations in genes regulating c-di-GMP signaling and found several mutants that altered colonization of the urinary tract. This study implicates c-di-GMP signaling during CAUTI.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , GMP Cíclico/análogos & derivados , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais/fisiologia , Animais , GMP Cíclico/genética , GMP Cíclico/metabolismo , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Camundongos
16.
Proc Natl Acad Sci U S A ; 110(22): 9084-9, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671116

RESUMO

Nucleotide signaling molecules are important messengers in key pathways that allow cellular responses to changing environments. Canonical secondary signaling molecules act through specific receptor proteins by direct binding to alter their activity. Cyclic diadenosine monophosphate (c-di-AMP) is an essential signaling molecule in bacteria that has only recently been discovered. Here we report on the identification of four Staphylococcus aureus c-di-AMP receptor proteins that are also widely distributed among other bacteria. Using an affinity pull-down assay we identified the potassium transporter-gating component KtrA as a c-di-AMP receptor protein, and it was further shown that this protein, together with c-di-AMP, enables S. aureus to grow in low potassium conditions. We defined the c-di-AMP binding activity within KtrA to the RCK_C (regulator of conductance of K(+)) domain. This domain is also found in a second S. aureus protein, a predicted cation/proton antiporter, CpaA, which as we show here also directly binds c-di-AMP. Because RCK_C domains are found in proteinaceous channels, transporters, and antiporters from all kingdoms of life, these findings have broad implications for the regulation of different pathways through nucleotide-dependent signaling. Using a genome-wide nucleotide protein interaction screen we further identified the histidine kinase protein KdpD that in many bacteria is also involved in the regulation of potassium transport and a PII-like signal transduction protein, which we renamed PstA, as c-di-AMP binding proteins. With the identification of these widely distributed c-di-AMP receptor proteins we link the c-di-AMP signaling network to a central metabolic process in bacteria.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Ativação do Canal Iônico/fisiologia , Bombas de Íon/metabolismo , Receptores de AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Staphylococcus aureus/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação do Canal Iônico/genética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Cloreto de Potássio , Mapeamento de Interação de Proteínas , Proteínas Quinases/metabolismo
17.
Infect Immun ; 82(5): 2048-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24595142

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genótipo , Humanos , Camundongos , Polissacarídeos Bacterianos/genética , Pseudomonas aeruginosa/genética , Ureia/farmacologia , Urina
18.
Nucleic Acids Res ; 40(7): e48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210888

RESUMO

The Differential Radial Capillary Action of Ligand Assay (DRaCALA) allows detection of protein interactions with low-molecular weight ligands based on separation of the protein-ligand complex by differential capillary action. Here, we present an application of DRaCALA to the study of nucleic acid-protein interactions using the Escherichia coli cyclic AMP receptor protein (CRP). CRP bound in DRaCALA specifically to (32)P-labeled oligonucleotides containing the consensus CRP binding site, but not to oligonucleotides with point mutations known to abrogate binding. Affinity and kinetic studies using DRaCALA yielded a dissociation constant and dissociation rate similar to previously reported values. Because DRaCALA is not subject to ligand size restrictions, whole plasmids with a single CRP-binding site were used as probes, yielding similar results. DNA can also function as an easily labeled carrier molecule for a conjugated ligand. Sequestration of biotinylated nucleic acids by streptavidin allowed nucleic acids to take the place of the protein as the immobile binding partner. Therefore, any molecular interactions involving nucleic acids can be tested. We demonstrate this principle utilizing a bacterial riboswitch that binds cyclic-di-guanosine monophosphate. DRaCALA is a flexible and complementary approach to other biochemical methods for rapid and accurate measurements of affinity and kinetics at near-equilibrium conditions.


Assuntos
Técnicas de Sonda Molecular , Ácidos Nucleicos/metabolismo , Sítios de Ligação , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , DNA/química , DNA/metabolismo , Sondas de DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Ligantes , Sondas de Oligonucleotídeos/química , Plasmídeos/genética , Receptores de AMP Cíclico/metabolismo , Riboswitch
19.
Proc Natl Acad Sci U S A ; 108(37): 15528-33, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876132

RESUMO

Interactions of proteins with low-molecular-weight ligands, such as metabolites, cofactors, and allosteric regulators, are important determinants of metabolism, gene regulation, and cellular homeostasis. Pharmaceuticals often target these interactions to interfere with regulatory pathways. We have developed a rapid, precise, and high-throughput method for quantitatively measuring protein-ligand interactions without the need to purify the protein when performed in cells with low background activity. This method, differential radial capillary action of ligand assay (DRaCALA), is based on the ability of dry nitrocellulose to separate the free ligand from bound protein-ligand complexes. Nitrocellulose sequesters proteins and bound ligand at the site of application, whereas free ligand is mobilized by bulk movement of the solvent through capillary action. We show here that DRaCALA allows detection of specific interactions between three nucleotides and their cognate binding proteins. DRaCALA allows quantitative measurement of the dissociation constant and the dissociation rate. Furthermore, DRaCALA can detect the expression of a cyclic-di-GMP (cdiGMP)-binding protein in whole-cell lysates of Escherichia coli, demonstrating the power of the method to bypass the prerequisite for protein purification. We have used DRaCALA to investigate cdiGMP signaling in 54 bacterial species from 37 genera and 7 eukaryotic species. These studies revealed the presence of potential cdiGMP-binding proteins in 21 species of bacteria, including 4 unsequenced species. The ease of obtaining metabolite-protein interaction data using the DRaCALA assay will facilitate rapid identification of protein-metabolite and protein-pharmaceutical interactions in a systematic and comprehensive approach.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Fenômenos Mecânicos , Proteínas/metabolismo , Extratos Celulares , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Células Eucarióticas/metabolismo , Ligantes , Células Procarióticas/metabolismo , Ligação Proteica , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA