Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.571
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
2.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400916

RESUMO

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios Motores/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Automação , Conectoma , Extremidades/inervação , Nervos Periféricos/ultraestrutura , Sinapses/ultraestrutura
3.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
4.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926579

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

5.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926570

RESUMO

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.

6.
Nature ; 613(7944): 543-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36418404

RESUMO

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Assuntos
Córtex Cerebelar , Rede Nervosa , Vias Neurais , Neurônios , Animais , Camundongos , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Córtex Cerebelar/ultraestrutura , Redes Neurais de Computação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Microscopia Eletrônica de Transmissão
7.
Mol Cell ; 81(20): 4243-4257.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34473946

RESUMO

Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Algoritmos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , DNA de Neoplasias/genética , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Mutação , Fosforilação , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Imagem Individual de Molécula
8.
Mol Cell ; 81(15): 3128-3144.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216544

RESUMO

Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.


Assuntos
Proteína BRCA1/genética , Replicação do DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular , Cisplatino/farmacologia , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , RNA Helicases/genética , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
9.
Nat Methods ; 20(2): 295-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585455

RESUMO

We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.


Assuntos
Processamento de Imagem Assistida por Computador , Neurônios , Processamento de Imagem Assistida por Computador/métodos
10.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538142

RESUMO

Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an autoencoder-based deep-learning model, was applied to provide a clearer picture of neurons' activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements.


Assuntos
Macaca mulatta , Córtex Motor , Neurônios , Desempenho Psicomotor , Animais , Masculino , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Movimento/fisiologia , Aprendizado Profundo , Potenciais de Ação/fisiologia
11.
EMBO J ; 40(4): e105450, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347625

RESUMO

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Proteoglicanas/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteoglicanas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
12.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310524

RESUMO

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Assuntos
Células-Tronco Mesenquimais , Neutrófilos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Fagocitose
13.
EMBO Rep ; 24(1): e54935, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314725

RESUMO

The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Centrossomo/metabolismo , Citoesqueleto de Actina/metabolismo
14.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37939785

RESUMO

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Síndromes Epilépticas , Malformações do Desenvolvimento Cortical , Humanos , Fluordesoxiglucose F18 , Malformações do Desenvolvimento Cortical/genética , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética/métodos , Convulsões/complicações , Serina-Treonina Quinases TOR , Proteínas Ativadoras de GTPase/genética
15.
Nucleic Acids Res ; 51(16): 8550-8562, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37395447

RESUMO

In meiosis, Dmc1 recombinase and the general recombinase Rad51 are responsible for pairing homologous chromosomes and exchanging strands. Fission yeast (Schizosaccharomyces pombe) Swi5-Sfr1 and Hop2-Mnd1 stimulate Dmc1-driven recombination, but the stimulation mechanism is unclear. Using single-molecule fluorescence resonance energy transfer (smFRET) and tethered particle motion (TPM) experiments, we showed that Hop2-Mnd1 and Swi5-Sfr1 individually enhance Dmc1 filament assembly on single-stranded DNA (ssDNA) and adding both proteins together allows further stimulation. FRET analysis showed that Hop2-Mnd1 enhances the binding rate of Dmc1 while Swi5-Sfr1 specifically reduces the dissociation rate during the nucleation, about 2-fold. In the presence of Hop2-Mnd1, the nucleation time of Dmc1 filaments shortens, and doubling the ss/double-stranded DNA (ss/dsDNA) junctions of DNA substrates reduces the nucleation times in half. Order of addition experiments confirmed that Hop2-Mnd1 binds on DNA to recruit and stimulate Dmc1 nucleation at the ss/dsDNA junction. Our studies directly support the molecular basis of how Hop2-Mnd1 and Swi5-Sfr1 act on different steps during the Dmc1 filament assembly. DNA binding of these accessory proteins and nucleation preferences of recombinases thus dictate how their regulation can take place.


Assuntos
Rad51 Recombinase , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Recombinases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
16.
J Am Chem Soc ; 146(14): 9564-9574, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557024

RESUMO

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.


Assuntos
Corantes Fluorescentes , Serotonina , Animais , Serotonina/metabolismo , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
17.
Nat Methods ; 18(7): 771-774, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168373

RESUMO

We develop an automatic method for synaptic partner identification in insect brains and use it to predict synaptic partners in a whole-brain electron microscopy dataset of the fruit fly. The predictions can be used to infer a connectivity graph with high accuracy, thus allowing fast identification of neural pathways. To facilitate circuit reconstruction using our results, we develop CIRCUITMAP, a user interface add-on for the circuit annotation tool CATMAID.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Sinapses/fisiologia , Animais , Encéfalo/citologia , Bases de Dados Factuais , Drosophila melanogaster , Microscopia Eletrônica , Vias Neurais
18.
Clin Endocrinol (Oxf) ; 100(3): 238-244, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37667866

RESUMO

OBJECTIVE: Cushing's syndrome is characterized by hypercortisolaemia and is frequently accompanied by comorbidities such as type 2 diabetes, hypertension, osteoporosis, depression and schizophrenia. It is unclear whether moderate but lifelong hypercortisolaemia is causally associated with these diseases in the general population. We aimed to address this research gap using a Mendelian randomization approach. METHODS: We used three cortisol-associated genetic variants in the SERPINA6/SERPINA1 region as genetic instruments in a two-sample, inverse-variance-weighted Mendelian randomization analysis. We obtained summary-level statistics for cortisol and disease outcomes from publicly available genetic consortia, and meta-analysed them as appropriate. We conducted a multivariable Mendelian randomization analysis to assess potential mediating effects. RESULTS: A 1 standard deviation higher genetically predicted plasma cortisol was associated with greater odds of hypertension (odds ratio: 1.12; 95% confidence interval [CI]: 1.05-1.18) as well as higher systolic blood pressure (mean difference [MD]: 0.03 SD change; 95% CI: 0.01-0.05) and diastolic blood pressure (MD: 0.03 SD change; 95% CI: 0.01-0.04). There was no evidence of association with type 2 diabetes, osteoporosis, depression and schizophrenia. The association with hypertension was attenuated upon adjustment for waist circumference, suggesting potential mediation through central obesity. CONCLUSION: There is strong evidence for a causal association between plasma cortisol and greater risk for hypertension, potentially mediated by obesity.


Assuntos
Síndrome de Cushing , Diabetes Mellitus Tipo 2 , Hipertensão , Osteoporose , Humanos , Diabetes Mellitus Tipo 2/genética , Hidrocortisona , Análise da Randomização Mendeliana , Hipertensão/genética , Doença Crônica , Síndrome de Cushing/genética , Obesidade , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
19.
Opt Express ; 32(7): 12228-12242, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571052

RESUMO

Highly collimated and directional backlights are essential for realizing advanced display technologies such as autostereoscopic 3D displays. Previously reported collimated backlights, either edge-lit or direct-lit, in general still suffer unsatisfactory form factors, directivity, uniformity, or crosstalk etc. In this work, we report a simple stacking architecture for the highly collimated and uniform backlights, by combining linear light source arrays and carefully designed cylindrical lens arrays. Experiments were conducted to validate the design and simulation, using the conventional edge-lit backlight or the direct-lit mini-LED (mLED) arrays as light sources, the NiFe (stainless steel) barrier sheets, and cylindrical lens arrays fabricated by molding. Highly collimated backlights with small angular divergence of ±1.45°âˆ¼±2.61°, decent uniformity of 93-96%, and minimal larger-angle sidelobes in emission patterns were achieved with controlled divergence of the light source and optimization of lens designs. The architecture reported here provides a convenient way to convert available backlight sources into a highly collimated backlight, and the use of optically reflective barrier also helps recycle light energy and enhance the luminance. The results of this work are believed to provide a facile approach for display technologies requiring highly collimated backlights.

20.
J Gen Intern Med ; 39(5): 873-877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286972

RESUMO

BACKGROUND: While student-run free clinics (SRFCs) play an important role in care for underserved populations, few mechanisms exist to promote collaboration among regional SRFCs. AIMS: To address this gap, the Chicagoland Free Clinics Consortium (CFCC) was formed to (1) facilitate collaboration between Chicagoland SRFCs, (2) provide innovation grant funding, and (3) host an annual conference. SETTING AND PARTICIPANTS: In 2018, students from the Pritzker School of Medicine founded the CFCC and partnered with peers from area schools to implement programming. PROGRAM DESCRIPTION: Between 2018 and 2022, CFCC engaged 23 SRFCs representing all 6 Chicagoland schools, held 4 annual conferences, and distributed $15,423 in grants to 19 projects at 14 SRFC sites. PROGRAM EVALUATION: A total of 176 students from 5 schools attended the 4 conferences. In 2022, 82 unique participants were surveyed, and 66% (54/82) responded. Eighty percent (43/54) reported they were "more likely to collaborate with other Chicagoland free clinics." In 2022, all grant sites were surveyed and 84% (16/19) responded. Most (87%,14/16) agreed the grant "allowed them to implement a project that would not have otherwise been accomplished" and 21% (4/19) were inter-institutional collaborations. DISCUSSION: To our knowledge, CFCC is the first student-led organization to promote sustained collaboration across SRFCs in a metropolitan area.


Assuntos
Clínica Dirigida por Estudantes , Humanos , Clínica Dirigida por Estudantes/organização & administração , Avaliação de Programas e Projetos de Saúde , Comportamento Cooperativo , Área Carente de Assistência Médica , Estudantes de Medicina , Instituições de Assistência Ambulatorial/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA