Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 5(6): 422-33, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24697257

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-ß (Aß), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Compostos de Lítio/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/fisiopatologia , Humanos , Compostos de Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico
2.
J Neurochem ; 89(6): 1358-67, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15189338

RESUMO

Growing evidence from in vitro studies supports that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, has neuroprotective effects. The present study investigated whether VPA reduces brain damage and improves functional outcome in a transient focal cerebral ischemia model of rats. Subcutaneous injection of VPA (300 mg/kg) immediately after ischemia followed by repeated injections every 12 h, was found to markedly decrease infarct size and reduce ischemia-induced neurological deficit scores measured at 24 and 48 h after ischemic onset. VPA treatment also suppressed ischemia-induced neuronal caspase-3 activation in the cerebral cortex. VPA treatments resulted in a time-dependent increase in acetylated histone H3 levels in the cortex and striatum of both ipsilateral and contralateral brain hemispheres of middle cerebral artery occlusion (MCAO) rats, as well as in these brain areas of normal, non-surgical rats, supporting the in vitro finding that VPA is a histone deacetylase (HDAC) inhibitor. Similarly, heat shock protein 70 (HSP70) levels were time-dependently up-regulated by VPA in the cortex and striatum of both ipsilateral and contralateral sides of MCAO rats and in these brain areas of normal rats. Altogether, our results demonstrate that VPA is neuroprotective in the cerebral ischemia model and suggest that the protection mechanisms may involve HDAC inhibition and HSP induction.


Assuntos
Infarto Cerebral/prevenção & controle , Proteínas de Choque Térmico/metabolismo , Inibidores de Histona Desacetilases , Ataque Isquêmico Transitório/tratamento farmacológico , Ácido Valproico/uso terapêutico , Acetilação , Animais , Comportamento Animal/efeitos dos fármacos , Caspase 3 , Caspases/metabolismo , Córtex Cerebral/metabolismo , Infarto Cerebral/patologia , Modelos Animais de Doenças , GABAérgicos/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Neostriado/metabolismo , Exame Neurológico/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA