Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834828

RESUMO

Age-related macular degeneration (AMD) is a blinding disease characterised by dysfunction of the retinal pigmented epithelium (RPE) which culminates in disruption or loss of the neurosensory retina. Genome-wide association studies have identified >60 genetic risk factors for AMD; however, the expression profile and functional role of many of these genes remain elusive in human RPE. To facilitate functional studies of AMD-associated genes, we developed a human RPE model with integrated CRISPR interference (CRISPRi) for gene repression by generating a stable ARPE19 cell line expressing dCas9-KRAB. We performed transcriptomic analysis of the human retina to prioritise AMD-associated genes and selected TMEM97 as a candidate gene for knockdown study. Using specific sgRNAs, we showed that knockdown of TMEM97 in ARPE19 reduced reactive oxygen species (ROS) levels and exerted a protective effect against oxidative stress-induced cell death. This work provides the first functional study of TMEM97 in RPE and supports a potential role of TMEM97 in AMD pathobiology. Our study highlights the potential for using CRISPRi to study AMD genetics, and the CRISPRi RPE platform generated here provided a useful in vitro tool for functional studies of AMD-associated genes.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração Macular , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio/metabolismo
2.
Curr Oncol Rep ; 24(12): 1751-1763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181612

RESUMO

PURPOSE OF REVIEW: This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment. RECENT FINDINGS: Anthracyclines (e.g. doxorubicin) are one of the most common and effective chemotherapeutic agents to treat a variety of cancers. However, the clinical usage of doxorubicin has been hampered by its severe cardiotoxic side effects leading to heart failure. Mitochondrial dysfunction is one of the major aetiologies of doxorubicin-induced cardiotoxicity. The morphology of mitochondria is highly dynamic, governed by two opposing processes known as fusion and fission, collectively known as mitochondrial dynamics. An imbalance in mitochondrial dynamics is often reported in tumourigenesis which can lead to adaptive and acquired resistance to chemotherapy. Drp1 is a key mitochondrial fission regulator, and emerging evidence has demonstrated that Drp1-mediated mitochondrial fission is upregulated in both cancer cells to their survival advantage and injured heart tissue in the setting of doxorubicin-induced cardiotoxicity. Effective treatment to prevent and mitigate doxorubicin-induced cardiotoxicity is currently not available. Recent advances in cardio-oncology have highlighted that Drp1 inhibition holds great potential as a targeted mitochondrial therapy for doxorubicin-induced cardiotoxicity.


Assuntos
Proteínas Mitocondriais , Neoplasias , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Cardiotoxicidade/prevenção & controle , Dinaminas/metabolismo , Dinaminas/farmacologia , Mitocôndrias/metabolismo , Doxorrubicina/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430812

RESUMO

Extracellular vesicles (EVs) from stem cells have shown significant therapeutic potential to repair injured cardiac tissues and regulate pathological fibrosis. However, scalable generation of stem cells and derived EVs for clinical utility remains a huge technical challenge. Here, we report a rapid size-based extrusion strategy to generate EV-like membranous nanovesicles (NVs) from easily sourced human iPSCs in large quantities (yield 900× natural EVs). NVs isolated using density-gradient separation (buoyant density 1.13 g/mL) are spherical in shape and morphologically intact and readily internalised by human cardiomyocytes, primary cardiac fibroblasts, and endothelial cells. NVs captured the dynamic proteome of parental cells and include pluripotency markers (LIN28A, OCT4) and regulators of cardiac repair processes, including tissue repair (GJA1, HSP20/27/70, HMGB1), wound healing (FLNA, MYH9, ACTC1, ILK), stress response/translation initiation (eIF2S1/S2/S3/B4), hypoxia response (HMOX2, HSP90, GNB1), and extracellular matrix organization (ITGA6, MFGE8, ITGB1). Functionally, NVs significantly promoted tubule formation of endothelial cells (angiogenesis) (p < 0.05) and survival of cardiomyocytes exposed to low oxygen conditions (hypoxia) (p < 0.0001), as well as attenuated TGF-ß mediated activation of cardiac fibroblasts (p < 0.0001). Quantitative proteome profiling of target cell proteome following NV treatments revealed upregulation of angiogenic proteins (MFGE8, MYH10, VDAC2) in endothelial cells and pro-survival proteins (CNN2, THBS1, IGF2R) in cardiomyocytes. In contrast, NVs attenuated TGF-ß-driven extracellular matrix remodelling capacity in cardiac fibroblasts (ACTN1, COL1A1/2/4A2/12A1, ITGA1/11, THBS1). This study presents a scalable approach to generating functional NVs for cardiac repair.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais/metabolismo , Proteoma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Hipóxia/metabolismo
4.
Development ; 145(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30266828

RESUMO

As human pluripotent stem cells (hPSCs) exit pluripotency, they reportedly switch from glycolytic energy production to primarily mitochondrial metabolism. Here, we show that upon ectoderm differentiation to neural precursor cells (NPCs), hPSCs increase glycolytic rate, ultimately producing more carbon as lactate than is consumed as glucose. However, glucose, lactate and pyruvate utilization decrease to half their PSC levels by the NPC stage, establishing a more quiescent metabolic state. Furthermore, we characterize a metabolic exit event within the first 24 h of differentiation, plausibly necessary to transition hPSCs out of the pluripotent state. Contrary to current thinking, mitochondrial mass does not increase during NPC induction. Instead, mitochondrial DNA copies and mitochondrial activity decrease, suggesting that mitochondrial metabolism either requires suppression, or is not required, for nascent ectoderm differentiation. Our work, therefore, contrasts with the dogma that the hPSC state is primarily glycolytic, transitioning to an oxidative metabolism upon the loss of the pluripotent state. Instead, we show that heightened glycolytic metabolism is acquired, indicating that metabolic modulation of both glycolysis and mitochondrial metabolism occurs during exit from pluripotency in hPSCs.


Assuntos
Diferenciação Celular , Glicólise , Mitocôndrias/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Atmosfera , Carbono/farmacologia , Linhagem Celular , Meios de Cultura , Ectoderma/citologia , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
5.
Stem Cells ; 38(5): 624-638, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003519

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , NAD/metabolismo , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Humanos
6.
Part Fibre Toxicol ; 17(1): 15, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381100

RESUMO

BACKGROUND: Silica nanoparticles (nanoSiO2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO2. RESULTS: The cumulative administration of nanoSiO2 reduced the mechanical performance index of the rat heart with a half-maximal inhibitory concentration (IC50) of 93 µg/mL, affecting the relaxation rate. In isolated mitochondria nanoSiO2 was found to be internalized, inhibiting oxidative phosphorylation and significantly reducing the mitochondrial membrane potential (ΔΨm). The mitochondrial permeability transition pore (mPTP) was also induced with an increasing dose of nanoSiO2 and partially recovered with, a potent blocker of the mPTP, Cyclosporine A (CsA). The activity of aconitase and thiol oxidation, in the adenine nucleotide translocase, were found to be reduced due to nanoSiO2 exposure, suggesting that nanoSiO2 induces the mPTP via thiol modification and ROS generation. In cardiac cells exposed to nanoSiO2, enhanced viability and reduction of H2O2 were observed after application of a specific mitochondrial antioxidant, MitoTEMPO. Concomitantly, CsA treatment in adult rat cardiac cells reduced the nanoSiO2-triggered cell death and recovered ATP production (from 32.4 to 65.4%). Additionally, we performed evaluation of the mitochondrial effect of nanoSiO2 in human cardiomyocytes. We observed a 40% inhibition of maximal oxygen consumption rate in mitochondria at 500 µg/mL. Under this condition we identified a remarkable diminution in the spare respiratory capacity. This data indicates that a reduction in the amount of extra ATP that can be produced by mitochondria during a sudden increase in energy demand. In human cardiomyocytes, increased LDH release and necrosis were found at increased doses of nanoSiO2, reaching 85 and 48%, respectively. Such deleterious effects were partially prevented by the application of CsA. Therefore, exposure to nanoSiO2 affects cardiac function via mitochondrial dysfunction through the opening of the mPTP. CONCLUSION: The aforementioned effects can be partially avoided reducing ROS or retarding the opening of the mPTP. These novel strategies which resulted in cardioprotection could be considered as potential therapies to decrease the side effects of nanoSiO2 exposure.


Assuntos
Coração/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Propriedades de Superfície
8.
Reproduction ; 150(4): 367-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159831

RESUMO

Oxygen is a powerful regulator of cell function and embryonic development. It has previously been determined that oxygen regulates human embryonic stem (hES) cell glycolytic and amino acid metabolism, but the effects on mitochondria are as yet unknown. Two hES cell lines (MEL1, MEL2) were analyzed to determine the role of 5% (physiological) and 20% (atmospheric) oxygen in regulating mitochondrial activity. In response to extended physiological oxygen culture, MEL2 hES cells displayed reduced mtDNA content, mitochondrial mass and expression of metabolic genes TFAM, NRF1, PPARa and MT-ND4. Furthermore, MEL2 hES cell glucose consumption, lactate production and amino acid turnover were elevated under physiological oxygen. In stark contrast, MEL1 hES cell amino acid and carbohydrate use and mitochondrial function were relatively unaltered in response to oxygen. Furthermore, differentiation kinetics were delayed in the MEL1 hES cell line following BMP4 treatment. Here we report the first incidence of metabolic dysfunction in a hES cell population, defined as a failure to respond to oxygen concentration through the modulation of metabolism, demonstrating that hES cells can be perturbed during culture despite exhibiting the defining characteristics of pluripotent cells. Collectively, these data reveal a central role for oxygen in the regulation of hES cell metabolism and mitochondrial function, whereby physiological oxygen promotes glucose flux and suppresses mitochondrial biogenesis and gene expression.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Mitocôndrias/metabolismo , Oxigênio/farmacologia , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , DNA Mitocondrial/biossíntese , Glucose/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
9.
Biosens Bioelectron ; 267: 116752, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276439

RESUMO

Cardiac organoids differentiated from induced pluripotent stem cells are emerging as a promising platform for pre-clinical drug screening, assessing cardiotoxicity, and disease modelling. However, it is challenging to simultaneously measure mechanical contractile forces and electrophysiological signals of cardiac organoids in real-time and in-situ with the existing methods. Here, we present a biting-inspired sensory system based on a resistive skin sensor and a microelectrode array. The bite-like contact can be established with a micromanipulator to precisely position the resistive skin sensor on the top of the cardiac organoid while the 3D microneedle electrode array probes from underneath. Such reliable contact is key to achieving simultaneous electro-mechanical measurements. We demonstrate the use of our system for modelling cardiotoxicity with the anti-cancer drug doxorubicin. The electro-mechanical parameters described here elucidate the acute cardiotoxic effects induced by doxorubicin. This integrated electro-mechanical system enables a suite of new diagnostic options for assessing cardiac organoids and tissues.

10.
Cardiovasc Res ; 119(3): 668-690, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35388880

RESUMO

Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis, and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons, and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types is often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human-induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Cardiopatias , Insuficiência Cardíaca , Humanos , Miócitos Cardíacos/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Insuficiência Cardíaca/metabolismo , Cardiopatias/patologia
11.
J Extracell Biol ; 2(12): e125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38938901

RESUMO

Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFß-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.

12.
Aging (Albany NY) ; 15(6): 1713-1733, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795578

RESUMO

Genetic and epidemiologic studies have significantly advanced our understanding of the genetic factors contributing to age-related macular degeneration (AMD). In particular, recent expression quantitative trait loci (eQTL) studies have highlighted POLDIP2 as a significant gene that confers risk of developing AMD. However, the role of POLDIP2 in retinal cells such as retinal pigment epithelium (RPE) and how it contributes to AMD pathology are unknown. Here we report the generation of a stable human RPE cell line ARPE-19 with POLDIP2 knockout using CRISPR/Cas, providing an in vitro model to investigate the functions of POLDIP2. We conducted functional studies on the POLDIP2 knockout cell line and showed that it retained normal levels of cell proliferation, cell viability, phagocytosis and autophagy. Also, we performed RNA sequencing to profile the transcriptome of POLDIP2 knockout cells. Our results highlighted significant changes in genes involved in immune response, complement activation, oxidative damage and vascular development. We showed that loss of POLDIP2 caused a reduction in mitochondrial superoxide levels, which is consistent with the upregulation of the mitochondrial superoxide dismutase SOD2. In conclusion, this study demonstrates a novel link between POLDIP2 and SOD2 in ARPE-19, which supports a potential role of POLDIP2 in regulating oxidative stress in AMD pathology.


Assuntos
Degeneração Macular , Superóxidos , Humanos , Superóxidos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Estresse Oxidativo/genética , Epitélio Pigmentado da Retina/patologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Proteínas Nucleares/metabolismo
13.
Int J Cardiol ; 346: 71-78, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798207

RESUMO

Friedreich's ataxia (FRDA) is a hereditary neuromuscular disorder. Cardiomyopathy is the leading cause of premature death in FRDA. FRDA cardiomyopathy is a complex and progressive disease with no cure or treatment to slow its progression. At the cellular level, cardiomyocyte hypertrophy, apoptosis and fibrosis contribute to the cardiac pathology. However, the heart is composed of multiple cell types and several clinical studies have reported the involvement of cardiac non-myocytes such as vascular cells, autonomic neurons, and inflammatory cells in the pathogenesis of FRDA cardiomyopathy. In fact, several of the cardiac pathologies associated with FRDA including cardiomyocyte necrosis, fibrosis, and arrhythmia, could be contributed to by a diseased vasculature and autonomic dysfunction. Here, we review available evidence regarding the current understanding of cellular mechanisms for, and the involvement of, cardiac non-myocytes in the pathogenesis of FRDA cardiomyopathy.


Assuntos
Cardiomiopatias , Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Ataxia de Friedreich/genética , Humanos , Proteínas de Ligação ao Ferro , Miócitos Cardíacos
14.
Nat Commun ; 13(1): 7259, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433978

RESUMO

Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an 'Atomic Force Microscope-like' engaging process. This allows for instantaneous detection of the organoids' minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.


Assuntos
Diafragma , Organoides , Humanos , Coração , Tórax , Fenômenos Mecânicos
15.
Cardiovasc Res ; 118(1): 212-225, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576380

RESUMO

AIMS: The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, ß-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS: In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION: Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.


Assuntos
Antígenos de Neoplasias/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Miócitos Cardíacos/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Idoso , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Glicosilação , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
Cardiovasc Res ; 118(1): 282-294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33386841

RESUMO

AIMS: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS: Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION: We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Assuntos
Dinaminas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hidralazina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dinaminas/metabolismo , Feminino , Células HeLa , Humanos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
17.
Cell Genom ; 2(6): 100142, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778138

RESUMO

To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.

18.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32251516

RESUMO

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Assuntos
Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Proteoma , Regeneração , Secretoma , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Antígenos de Superfície/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Proteômica , Ratos Nus , Transplante de Células-Tronco/instrumentação , Fatores de Tempo
19.
Stem Cells Int ; 2019: 8195614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236115

RESUMO

Metabolism has been shown to alter cell fate in human pluripotent stem cells (hPSC). However, current understanding is almost exclusively based on work performed at 20% oxygen (air), with very few studies reporting on hPSC at physiological oxygen (5%). In this study, we integrated metabolic, transcriptomic, and epigenetic data to elucidate the impact of oxygen on hPSC. Using 13C-glucose labeling, we show that 5% oxygen increased the intracellular levels of glycolytic intermediates, glycogen, and the antioxidant response in hPSC. In contrast, 20% oxygen increased metabolite flux through the TCA cycle, activity of mitochondria, and ATP production. Acetylation of H3K9 and H3K27 was elevated at 5% oxygen while H3K27 trimethylation was decreased, conforming to a more open chromatin structure. RNA-seq analysis of 5% oxygen hPSC also indicated increases in glycolysis, lysine demethylases, and glucose-derived carbon metabolism, while increased methyltransferase and cell cycle activity was indicated at 20% oxygen. Our findings show that oxygen drives metabolite flux and specifies carbon fate in hPSC and, although the mechanism remains to be elucidated, oxygen was shown to alter methyltransferase and demethylase activity and the global epigenetic landscape.

20.
Acta Biomater ; 94: 281-294, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152943

RESUMO

Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.35 mm) were seeded with 200,000 hiPSC ECs ±â€¯100,000 human vascular smooth muscle cells (hvSMC), and cultured for 1-3 days, with capillaries formed by 24 h which were CD31+, VE-Cadherin+, EphB4+, VEGFR2+ and Ki67+, whilst hvSMCs (calponin+) attached abluminally. In vivo: In SCID mice, bi-lateral epigastric vascular pedicles were isolated in a silicone chamber for a 3 week 'delay period' for pedicle capillary sprouting, then reopened, and two hiPSC EC ±â€¯hvSMCs seeded scaffolds transplanted over the pedicle. The chamber was either resealed (Group 1), or removed and surrounding tissue secured around the pedicle + scaffolds (Group 2), for 1 or 2 weeks. Human capillaries survived in vivo and were CD31+, VE-Cadherin+ and VEGFR2+. Human vSMCs remained attached, and host mesenchymal cells also attached abluminally. Systemically injected FITC-dextran present in human capillary lumens indicated inosculation to host capillaries. Human iPSC EC capillary morphometric parameters at one week in vivo were equal to or higher than the same parameters measured in human abdominal skin. This 'proof of concept' study has demonstrated that bio-engineering an autologous human tissue flap based on hiPSC EC could minimize the use of donor flaps and has potential applications for complex wound coverage. STATEMENT OF SIGNIFICANCE: Tissue flaps, used for surgical reconstruction of wounds, require complex surgery, often associated with morbidity. Bio-engineering a simpler alternative, we assembled a human induced pluripotent stem cell derived endothelial cell (hiPSC ECs) capillary network in a porous scaffold in vitro, which when transplanted over a mouse vascular pedicle in vivo formed a functional tissue flap with mouse blood flow in the human capillaries. Therefore it is feasible to form an autologous tissue flap derived from a hiPSC EC capillary network assembled in vitro, and functionally connect to a vascular pedicle in vivo that could be utilized in complex wound repair for chronic or acute wounds.


Assuntos
Capilares/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Poliuretanos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Capilares/citologia , Linhagem Celular , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos SCID , Porosidade , Procedimentos de Cirurgia Plástica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA