Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Inorg Chem ; 63(20): 9184-9194, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722234

RESUMO

We report a new nickel hydroxyfluoride diaspore Ni(OH)F prepared using hydrothermal synthesis from NiCl2·6H2O and NaF. Magnetic characterization reveals that, contrary to other reported transition-metal hydroxyfluoride diaspores, Ni(OH)F displays weak ferromagnetism below the magnetic ordering temperature. To understand this difference, neutron diffraction is used to determine the long-range magnetic structure. The magnetic structure is found to be distinct from those reported for other hydroxyfluoride diaspores and shows an antiferromagnetic spin ordering in which ferromagnetic canting is allowed by symmetry. Furthermore, neutron powder diffraction on a deuterated sample, Ni(OD)F, reveals partial anion ordering that is distinctive to what has previously been reported for Co(OH)F and Fe(OH)F. Density functional theory calculations show that OH/F ordering can have a directing influence on the lowest energy magnetic ground state. Our results point toward a subtle interplay between the sign of magnetic exchange interactions, the electronic configuration, and anion disordering.

2.
Faraday Discuss ; 243(0): 354-377, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078168

RESUMO

Efficient artificial photosynthesis systems are currently realized as catalyst- and surface-functionalized photovoltaic tandem-and triple-junction devices, enabling photoelectrochemical (PEC) water oxidation while simultaneously recycling CO2 and generating hydrogen as a solar fuel for storable renewable energy. Although PEC systems also bear advantages for the activation of dinitrogen - such as a high system tunability with respect to the electrocatalyst integration and a directly controllable electron flux to the anchoring catalyst through the adjustability of incoming irradiation - only a few PEC devices have been developed and investigated for this purpose. We have developed a series of photoelectrodeposition procedures to deposit mixed-metal electrocatalyst nanostructures directly on the semiconductor surface for light-assisted dinitrogen activation. These electrocatalyst compositions containing Co, Mo and Ru in different atomic ratios follow previously made recommendations of metal compositions for dinitrogen reduction and exhibit different physical properties. XPS studies of the photoelectrode surfaces reveal that our electrocatalyst films are to a large degree nitrogen-free after their fabrication, which is generally difficult to achieve with traditional magnetron sputtering or e-beam evaporation techniques. Initial chronoamperometric measurements of the p-InP photoelectrode coated with the Co-Mo alloy electrocatalyst show higher photocurrent densities in the presence of N2(g) than in the presence of Ar at -0.09 V vs. RHE. Indications of successful dinitrogen activation have also been found in consecutive XPS studies, where both N 1s and Mo 3d spectra reveal evidence of nitrogen-metal interactions.

3.
Inorg Chem ; 62(11): 4503-4513, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36877753

RESUMO

The crystallization of a new series of A-site substituted lanthanum ferrite materials (La1-xREx)FeO3 was explored by the hydrothermal method at 240 °C, for rare earth (RE) = Nd, Sm, Gd, Ho, Er, Yb, and Y, with 0 ≤ x ≤ 1. The effect of elemental substitution on the morphological, structural, and magnetic properties of the materials was studied using high-resolution powder X-ray diffraction, energy dispersive spectroscopy (EDS) on the scanning electron microscope, Raman spectroscopy, and SQUID magnetometry. If the radius of the La3+ and the substituent ions is similar, such as for Nd3+, Sm3+, and Gd3+, homogeneous solid solutions are formed, with the orthorhombic GdFeO3-type structure, and a continuous evolution of Raman spectra with composition and distinct magnetic behavior from the end members. When the radius difference between substituents and La3+ is large, such as for Ho3+, Er3+, Yb3+, and Y3+, then instead of forming solid solutions, crystallization in separate phases is found. However, low levels of element mixing are found and intergrowths of segregated regions give composite particles. In this case, the Raman spectra and magnetic behavior are characteristic of mixtures of phases, while EDS shows distinctive elemental segregation. A-site replacement induces an evolution in the crystallite shape with an increasing amount of substituent ions and this is most evident for RE = Y from cube-shaped crystals seen for LaFeO3 to multipodal crystals for (La1-xYx)FeO3, providing evidence for a phase-separation-driven evolution of morphology.

4.
Inorg Chem ; 61(26): 10015-10022, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35729687

RESUMO

We present the synthesis of a novel binary metal oxide material: Ba7Mn4O15. The crystal structure has been investigated by high-resolution powder synchrotron X-ray diffraction in the temperature range of 100-300 K as well as by powder neutron diffraction at 10 and 80 K. This material represents an isostructural barium-substituted analogue of the layered material Sr7Mn4O15 that forms its own structural class. However, we find that Ba7Mn4O15 adopts a distinct magnetic ordering, resulting in a magnetoelectric ground state below 50 K. The likely magnetoelectric coupling mechanisms have been inferred from performing a careful symmetry-adapted refinement against the powder neutron diffraction experiments, as well as by making a comparison with the nonmagnetoelectric ground state of Sr7Mn4O15.

5.
Phys Rev Lett ; 120(9): 097202, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547338

RESUMO

Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo_{5} gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo_{5}, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.

6.
Angew Chem Int Ed Engl ; 53(17): 4423-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644102

RESUMO

Low-temperature (200 °C) hydrothermal synthesis of the ruthenium oxides Ca1.5 Ru2 O7 , SrRu2 O6 , and Ba2 Ru3 O9 (OH) is reported. Ca1.5 Ru2 O7 is a defective pyrochlore containing Ru(V/VI) ; SrRu2 O6 is a layered Ru(V) oxide with a PbSb2 O6 structure, whilst Ba2 Ru3 O9 (OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu2 O6 exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 °C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions.

7.
Inorg Chem ; 52(20): 12161-9, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24102287

RESUMO

A new mixed rare-earth orthochromite series, LaxSm1-xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by the hydrothermal treatment of amorphous mixed-metal hydroxides at 370 °C for 48 h. Transmission electron microscopy (TEM) reveals the formation of highly crystalline particles with dendritic-like morphologies. Rietveld refinements against high-resolution powder X-ray diffraction (PXRD) data show that the distorted perovskite structures are described by the orthorhombic space group Pnma over the full composition range. Unit cell volumes and Cr-O-Cr bond angles decrease monotonically with increasing samarium content, consistent with the presence of the smaller lanthanide in the structure. Raman spectroscopy confirms the formation of solid solutions, the degree of their structural distortion. With the aid of shell-model calculations the complex mixing of Raman modes below 250 cm(-1) is clarified. Magnetometry as a function of temperature reveals the onset of low-temperature antiferromagnetic ordering of Cr(3+) spins with weak ferromagnetic component at Néel temperatures (TN) that scale linearly with unit cell volume and structural distortion. Coupling effects between Cr(3+) and Sm(3+) ions are examined with enhanced susceptibilities below TN due to polarization of Sm(3+) moments. At low temperatures the Cr(3+) sublattice is shown to undergo a second-order spin reorientation observed as a rapid decrease of susceptibility.

8.
Int J Mol Sci ; 14(4): 8585-602, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23603890

RESUMO

Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide) (pNiPAM). Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol) thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH) quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05) and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds) due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold.


Assuntos
Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , Resinas Acrílicas , Animais , Linhagem Celular , Preparações de Ação Retardada/química , Ouro , Temperatura Alta , L-Lactato Desidrogenase/metabolismo , Lasers de Estado Sólido , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
9.
Chem Sci ; 14(3): 675-683, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36741534

RESUMO

The molecular titanium-oxo cluster [Ti6O6(OiPr)6(O2C t Bu)6] (1) can be photoactivated by UV light, resulting in a deeply coloured mixed valent (photoreduced) Ti (iii/iv) cluster, alongside alcohol and ketone (photooxidised) organic products. Mechanistic studies indicate that a two-electron (not free-radical) mechanism occurs in this process, which utilises the cluster structure to facilitate multielectron reactions. The photoreduced products [Ti6O6(OiPr)4(O2C t Bu)6(sol)2], sol = iPrOH (2) or pyridine (3), can be isolated in good yield and are structurally characterized, each with two, uniquely arranged, antiferromagnetically coupled d-electrons. 2 and 3 undergo onward oxidation under air, with 3 cleanly transforming into peroxide complex, [Ti6O6(OiPr)4(O2C t Bu)6(py)(O2)] (5). 5 reacts with isopropanol to regenerate the initial cluster (1) completing a closed cycle, and suggesting opportunities for the deployment of these easily made and tuneable clusters for sustainable photocatalytic processes using air and light. The redox reactivity described here is only possible in a cluster with multiple Ti sites, which can perform multi-electron processes and can adjust its shape to accommodate changes in electron density.

10.
Acta Crystallogr C Struct Chem ; 79(Pt 1): 18-24, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602017

RESUMO

The synthesis and crystal structure (100 K) of the title compound, [(CH3)2NH2][Fe(C10H11O2N3S)2], are reported. The asymmetric unit consists of an octahedral [FeIII(L)2]- fragment, where L2- is 3-ethoxysalicylaldehyde thiosemicarbazonate(2-), and a dimethylammonium cation. Each L2- ligand binds with the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions, and mutually trans N atoms. The FeIII ion is in the high-spin state at 100 K. The variable-temperature magnetic susceptibility measurements (5-320 K) are consistent with the presence of a high-spin FeIII ion with D = 0.83 (1) cm-1 and g = 2.


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ferro/química
11.
Chem Commun (Camb) ; 59(90): 13502-13505, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37882454

RESUMO

A Mn2+-Li-Nb disordered rock-salt oxide cathode is prepared by a solid-state reaction under 5% H2/N2, and its electrochemical property shows a high voltage plateau at 4.8 V, with irreversible structural changes in the 1st cycle due to O redox processes; this is supported by powder X-ray diffraction and ex situ laboratory Mn K-edge XANES data.

12.
Organometallics ; 41(23): 3557-3567, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533115

RESUMO

Straightforward procedures for the generation of rhodium(I) κCl-chlorocarbon complexes of the form [Rh(PONOP-tBu)(κ Cl-ClR)][BArF 4] [R = CH2Cl, A; Ph, 1; Cy, 2; tBu, 3; PONOP-tBu = 2,6-bis(di-tert-butylphosphinito)pyridine; ArF = 3,5-bis(trifluoromethyl)phenyl] in solution are described, enabling isolation of analytically pure A and crystallographic characterization of the new complexes 1 and 2. Complex 1 was found to be stable at ambient temperature, but prolonged heating in chlorobenzene at 125 °C resulted in formation of [Rh(PONOP-tBu)(Ph)Cl][BArF 4] 4 with experimental and literature evidence pointing toward a concerted C(sp2)-Cl bond oxidative addition mechanism. C(sp3)-Cl bond activation of dichloromethane, chlorocyclohexane, and 2-chloro-2-methylpropane by the rhodium(I) pincer occurred under considerably milder conditions, and radical mechanisms that commence with chloride atom abstraction and involve generation of the rhodium(II) metalloradical [Rh(PONOP-tBu)Cl][BArF 4] 6 are instead proposed. For dichloromethane, [Rh(PONOP-tBu)(CH2Cl)Cl][BArF 4] 5 was formed in the dark, but facile photo-induced reductive elimination occurred when exposed to light. Net dehydrochlorination affording [Rh(PONOP-tBu)(H)Cl][BArF 4] 7 and an alkene byproduct resulted for chlorocyclohexane and 2-chloro-2-methylpropane, consistent with hydrogen atom abstraction from the corresponding alkyl radicals by 6. This suggestion is supported by dynamic hydrogen atom transfer between 6 and 7 on the 1H NMR time scale at 298 K in the presence of TEMPO.

13.
Acta Crystallogr C Struct Chem ; 78(Pt 1): 63-69, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982050

RESUMO

The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL- is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1-) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL- ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5-320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm-1.

14.
J Nanosci Nanotechnol ; 11(4): 3586-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776740

RESUMO

Novel magnetite-silica nanocomposite particles were prepared using SBA-15 nanoporous silica as template. Magnetite nanoparticles were impregnated into the nanopore array of the silica template through thermal decomposition of iron(III) acetylacetonate, Fe(AcAc)3 at 200 degrees C. These composite particles were characterized using TEM, XRD and SQUID magnetometry. The TEM images showed that the size of composite particles was around 500 nm and the particles retained the nanoporous array of SBA-15. The formation of magnetite nanoparticles was confirmed by the powder XRD study. These composite particles also exhibited ferrimagnetic properties. By coating with short chain polyethyleneimine (PEI), these particles are capable of binding DNA molecules for gene delivery and transfection. With an external magnetic field, the transfection efficiency was shown to have an increase of around 15%. The results indicated that these composite nanoparticles may be further developed as a new tool for nanomagnetic gene transfection.


Assuntos
DNA/genética , Compostos Férricos/química , Magnetismo/instrumentação , Nanopartículas de Magnetita/química , Dióxido de Silício/química , Transfecção/instrumentação , DNA/administração & dosagem , DNA/química , Desenho de Equipamento , Análise de Falha de Equipamento , Transfecção/métodos
15.
ACS Appl Mater Interfaces ; 13(38): 45870-45880, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34541850

RESUMO

Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization.


Assuntos
Calefação , Nanopartículas Magnéticas de Óxido de Ferro/química , Resinas Acrílicas/química , Ligantes , Fenômenos Magnéticos , Tamanho da Partícula , Polietilenoglicóis/química , Polifosfatos/química
16.
Sci Rep ; 10(1): 16485, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999347

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
J Phys Condens Matter ; 32(25): 255802, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32249761

RESUMO

We present the results of torque magnetometry and magnetic susceptibility measurements to study in detail the spin reorientation transition (SRT) and magnetic anisotropy in the permanent magnet NdCo5. We further show simulations of the measurements using first-principles calculations based on density-functional theory and the disordered local moment picture of magnetism at finite temperatures. The good agreement between theory and experimental data leads to a detailed description of the physics underpinning the SRT. In particular we are able to resolve the magnetization of, and to reveal a canting between, the Nd and Co sublattices. The torque measurements carried out in the ac and ab planes near the easy direction allow us to estimate the anisotropy constants, K 1, K 2 and K 4 and their temperature dependences. Torque curves, τ(γ) recorded by varying the direction of a constant magnetic field in the crystallographic ac plane show a reversal in the polarity as the temperature is changed across the SRT (240 < T < 285 K). Within this domain, τ(γ) exhibits unusual features different to those observed above and below the transition. The single crystals of NdCo5 were grown using the optical floating zone technique.

18.
Sci Rep ; 10(1): 9813, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555354

RESUMO

The GaV4S8-ySey (y = 0 to 8) family of materials have been synthesized in both polycrystalline and single crystal form, and their structural and magnetic properties thoroughly investigated. Each of these materials crystallizes in the F[Formula: see text][Formula: see text]3m space group at ambient temperature. However, in contrast to the end members GaV4S8 and GaV4Se8, that undergo a structural transition to the R3m space group at 42 and 41 K respectively, the solid solutions (y = 1 to 7) retain cubic symmetry down to 1.5 K. In zero applied field the end members of the family order ferromagnetically at 13 K (GaV4S8) and 18 K (GaV4Se8), while the intermediate compounds exhibit a spin-glass-like ground state. We demonstrate that the magnetic structure of GaV4S8 shows localization of spins on the V cations, indicating that a charge ordering mechanism drives the structural phase transition. We conclude that the observation of both structural and ferromagnetic transitions in the end members of the series in zero field is a prerequisite for the stabilization of a skyrmion phase, and discuss how the absence of these transitions in the y = 1 to 7 materials can be explained by their structural properties.

19.
Food Funct ; 11(4): 2938-2942, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211629

RESUMO

Iron is an essential element, and cornflake-style cereals are typically fortified with iron to a level up to 14 mg iron per 100 g. Even single cornflakes exhibit magnetic behaviour. We extracted iron microparticles from samples of two own-brand supermarket cornflakes using a strong permanent magnet. Synchrotron iron K-edge X-ray absorption near-edge spectroscopic data were consistent with identification as metallic iron, and X-ray diffraction studies provided unequivocal identification of the extracted iron as body-centred cubic (BCC) α-iron. Magnetometry measurements were also consistent with ca. 14 mg per 100 g BCC iron. These findings emphasise that attention must be paid to the speciation of trace elements, in relation to their bioavailability. To mimic conditions in the stomach, we suspended the iron extract in dilute HCl (pH 1.0-2.0) at 310 K (body temperature) and found by ICP-MS that over a period of 5 hours, up to 13% of the iron dissolved. This implies that despite its metallic form in the cornflakes, the iron is potentially bioavailable for oxidation and absorption into the body.


Assuntos
Grão Comestível/química , Ferro/metabolismo , Disponibilidade Biológica , Magnetometria , Oligoelementos/metabolismo , Espectroscopia por Absorção de Raios X , Difração de Raios X
20.
J Phys Condens Matter ; 30(32): 32LT01, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957599

RESUMO

We present calculations and experimental measurements of the temperature-dependent magnetization of a single crystal of GdCo5 in magnetic fields of order 60 T. At zero temperature the calculations, based on density-functional theory in the disordered-local-moment picture, predict a field-induced transition from an antiferromagnetic to a canted alignment of Gd and Co moments at 46.1 T. At higher temperatures the calculations find this critical field to increase along with the zero-field magnetization. The experimental measurements observe this transition to occur between 44-48 T at 1.4 K. Up to temperatures of at least 100 K, the experiments continue to observe the transition; however, at variance with the calculations, no strong temperature dependence of the critical field is apparent. We assign this difference to the inaccurate description of the zero-field magnetization of the calculations at low temperatures, due to the use of classical statistical mechanics. Correcting for this effect, we recover a consistent description of the high-field magnetization of GdCo5 from theory and experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA