RESUMO
We assess the performance of mRNA capture sequencing to identify fusion transcripts in FFPE tissue of different sarcoma types, followed by RT-qPCR confirmation. To validate our workflow, six positive control tumors with a specific chromosomal rearrangement were analyzed using the TruSight RNA Pan-Cancer Panel. Fusion transcript calling by FusionCatcher confirmed these aberrations and enabled the identification of both fusion gene partners and breakpoints. Next, whole-transcriptome TruSeq RNA Exome sequencing was applied to 17 fusion gene-negative alveolar rhabdomyosarcoma (ARMS) or undifferentiated round cell sarcoma (URCS) tumors, for whom fluorescence in situ hybridization (FISH) did not identify the classical pathognomonic rearrangements. For six patients, a pathognomonic fusion transcript was readily detected, i.e., PAX3-FOXO1 in two ARMS patients, and EWSR1-FLI1, EWSR1-ERG, or EWSR1-NFATC2 in four URCS patients. For the 11 remaining patients, 11 newly identified fusion transcripts were confirmed by RT-qPCR, including COPS3-TOM1L2, NCOA1-DTNB, WWTR1-LINC01986, PLAA-MOB3B, AP1B1-CHEK2, and BRD4-LEUTX fusion transcripts in ARMS patients. Additionally, recurrently detected secondary fusion transcripts in patients diagnosed with EWSR1-NFATC2-positive sarcoma were confirmed (COPS4-TBC1D9, PICALM-SYTL2, SMG6-VPS53, and UBE2F-ALS2). In conclusion, this study shows that mRNA capture sequencing enhances the detection rate of pathognomonic fusions and enables the identification of novel and secondary fusion transcripts in sarcomas.
Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras , Proteínas de Ciclo Celular/genética , Ácido Ditionitrobenzoico , Humanos , Hibridização in Situ Fluorescente , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição/genéticaRESUMO
Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+). The selective advantage of DNA copy number changes in these cells has been attributed to several underlying processes including enhanced proliferation. We hypothesized that these recurrent chromosomal imbalances become rapidly embedded in the cultured hESCs through a replicative stress driven Darwinian selection process. To this end, we compared the effect of hydroxyurea-induced replicative stress vs normal growth conditions in an equally mixed cell population of isogenic euploid and 17q + hESCs. We could show that 17q + hESCs rapidly overtook normal hESCs. Our data suggest that recurrent chromosomal segmental gains provide a proliferative advantage to hESCs under increased replicative stress, a process that may also explain the highly recurrent nature of certain imbalances in cancer.
Assuntos
Divisão Celular , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/citologia , Seleção Genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 17 , Variações do Número de Cópias de DNA , Humanos , Hidroxiureia , Estresse Fisiológico , TranscriptomaRESUMO
In recent years, technological advances in transcriptome profiling revealed that the repertoire of human RNA molecules is more diverse and extended than originally thought. This diversity and complexity mainly derive from a large ensemble of noncoding RNAs. Because of their key roles in cellular processes important for normal development and physiology, disruption of noncoding RNA expression is intrinsically linked to human disease, including cancer. Therefore, studying the noncoding portion of the transcriptome offers the prospect of identifying novel therapeutic and diagnostic targets. Although evidence of the relevance of noncoding RNAs in cancer is accumulating, we still face many challenges when it comes to accurately profiling their expression levels. Some of these challenges are inherent to the technologies employed, whereas others are associated with characteristics of the noncoding RNAs themselves. In this review, we discuss the challenges related to long noncoding RNA expression profiling, highlight how cancer long noncoding RNAs provide new opportunities for cancer diagnosis and treatment, and reflect on future developments.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/diagnóstico , RNA Longo não Codificante/metabolismoRESUMO
The cellular transcriptome contains a wide diversity of untranslated RNAs, of which the class of regulatory long noncoding RNAs (lncRNAs) has only recently been recognized. Evidence swiftly accumulates of lncRNAs influencing mitochondrial activities of eukaryotic cells, and perturbed expression is conspicuously associated with human diseases. In this review, we describe the multifaceted effects of lncRNAs on mitochondrial function, more particularly on the balance between oxidative phosphorylation and glycolysis, on the production of reactive oxygen species, and on apoptosis in human cells. Emphasis is placed on the involvement of lncRNAs in cancer metabolism, as tumor cells rely heavily on modifications of mitochondrial functioning as an essential component for sustained tumorigenesis and cancer progression. From the nonexhaustive list of lncRNAS described in this review, ANRIL, AScmtRNA, H19, HOTAIR, LincRNA-p21, MALAT1, RMRP, SAMMSON, and VL30 have emerged as potent regulators of mitochondrial metabolism. Due to their key role in cancer progression, they represent potential targets of innovative lncRNA-based treatment strategies.
Assuntos
Regulação da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Respiração Celular , Metabolismo Energético , Humanos , Inativação Metabólica/genética , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação Oxidativa , RNA/genética , RNA Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Although the sequencing landscape is rapidly evolving and sequencing costs are continuously decreasing, whole genome sequencing is still too expensive for use on a routine basis. Targeted resequencing of only the regions of interest decreases both costs and the complexity of the downstream data-analysis. Various target enrichment strategies are available, but none of them obtain the degree of coverage uniformity, flexibility and specificity of PCR-based enrichment. On the other hand, the biggest limitation of target enrichment by PCR is the need to design large numbers of partially overlapping assays to cover the target. RESULTS: To overcome the aforementioned hurdles, we have developed primerXL, a state-of-the-art PCR primer design pipeline for targeted resequencing. It uses an optimized design criteria relaxation cascade and a thorough downstream in silico evaluation process to generate high quality singleplex PCR assays, reducing the need for amplicon normalization, and outperforming other target enrichment strategies and similar primer design tools when considering assay quality, coverage uniformity and target coverage. Results of four different sequencing projects with 2348 amplicons in total covering 470 kb are presented. PrimerXL can be accessed at www.primerxl.org . CONCLUSION: PrimerXL is an state-of-the-art, easy to use primer design webtool capable of generating high-quality targeted resequencing assays. The workflow is fully customizable to suit every researchers' needs, while an innovative relaxation cascade ensures maximal target coverage.
Assuntos
Primers do DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Interface Usuário-Computador , Animais , Primers do DNA/genética , Humanos , Plantas/genética , Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
BACKGROUND: The universal qPCR data exchange file format RDML is today well accepted by the scientific community, part of the MIQE guidelines and implemented in many qPCR instruments. With the increased use of RDML new challenges emerge. The flexibility of the RDML format resulted in some implementations that did not meet the expectations of the consortium in the level of support or the use of elements. RESULTS: In the current RDML version 1.2 the description of the elements was sharpened. The open source editor RDML-Ninja was released (http://sourceforge.net/projects/qpcr-ninja/). RDML-Ninja allows to visualize, edit and validate RDML files and thus clarifies the use of RDML elements. Furthermore RDML-Ninja serves as reference implementation for RDML and enables migration between RDML versions independent of the instrument software. The database RDMLdb will serve as an online repository for RDML files and facilitate the exchange of RDML data (http://www.rdmldb.org). Authors can upload their RDML files and reference them in publications by the unique identifier provided by RDMLdb. The MIQE guidelines propose a rich set of information required to document each qPCR run. RDML provides the vehicle to store and maintain this information and current development aims at further integration of MIQE requirements into the RDML format. CONCLUSIONS: The editor RDML-Ninja and the database RDMLdb enable scientists to evaluate and exchange qPCR data in the instrument-independent RDML format. We are confident that this infrastructure will build the foundation for standardized qPCR data exchange among scientists, research groups, and during publication.
Assuntos
Redes de Comunicação de Computadores/normas , Bases de Dados Factuais , Reação em Cadeia da Polimerase/métodos , Software , HumanosRESUMO
The release of benchtop next-generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost-efficient workflows is high. We used singleplex-PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing-based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost-efficiency were obtained, independent of the availability of commercial kits. The approach was validated for â¼250 genes associated with monogenic disorders. An overall sensitivity (>99%) similar to Sanger sequencing was observed in combination with a positive predictive value of >98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189-accreditation was obtained for the workflow. A major asset of the singleplex PCR-based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos , Prognóstico , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Next generation targeted resequencing is replacing Sanger sequencing at high pace in routine genetic diagnosis. The need for well validated, high quality enrichment platforms to complement the bench-top next generation sequencing devices is high. RESULTS: We used the WaferGen Smartchip platform to perform highly parallelized PCR based target enrichment for a set of known cancer genes in a well characterized set of cancer cell lines from the NCI60 panel. Optimization of PCR assay design and cycling conditions resulted in a high enrichment efficiency. We provide proof of a high mutation rediscovery rate and have included technical replicates to enable SNP calling validation demonstrating the high reproducibility of our enrichment platform. CONCLUSIONS: Here we present our custom developed quantitative PCR based target enrichment platform. Using highly parallel nanoliter singleplex PCR reactions makes this a flexible and efficient platform. The high mutation validation rate shows this platform's promise as a targeted resequencing method for multi-gene routine sequencing diagnostics.
Assuntos
Reação em Cadeia da Polimerase , Linhagem Celular Tumoral , DNA/análise , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNARESUMO
PURPOSE: Autosomal recessive retinal dystrophies are clinically and genetically heterogeneous, which hampers molecular diagnosis. We evaluated identity-by-descent-guided Sanger sequencing or whole-exome sequencing in 26 families with nonsyndromic (19) or syndromic (7) autosomal recessive retinal dystrophies to identify disease-causing mutations. METHODS: Patients underwent genome-wide identity-by-descent mapping followed by Sanger sequencing (16) or whole-exome sequencing (10). Whole-exome sequencing data were filtered against identity-by-descent regions and known retinal dystrophy genes. The medical history was reviewed in mutation-positive families. RESULTS: We identified mutations in 14 known retinal dystrophy genes in 20/26 (77%) families: ABCA4, CERKL, CLN3, CNNM4, C2orf71, IQCB1, LRAT, MERTK, NMNAT1, PCDH15, PDE6B, RDH12, RPGRIP1, and USH2A. Whole-exome sequencing in single individuals revealed mutations in either the largest or smaller identity-by-descent regions, and a compound heterozygous genotype in NMNAT1. Moreover, a novel deletion was found in PCDH15. In addition, we identified mutations in CLN3, CNNM4, and IQCB1 in patients initially diagnosed with nonsyndromic retinal dystrophies. CONCLUSION: Our study emphasized that identity-by-descent-guided mutation analysis and/or whole-exome sequencing are powerful tools for the molecular diagnosis of retinal dystrophy. Our approach uncovered unusual molecular findings and unmasked syndromic retinal dystrophies, guiding future medical management. Finally, elucidating ABCA4, LRAT, and MERTK mutations offers potential gene-specific therapeutic perspectives.
Assuntos
Consanguinidade , Análise Mutacional de DNA , Exoma , Mutação , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Adolescente , Proteínas Relacionadas a Caderinas , Caderinas/genética , Criança , Pré-Escolar , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Oftalmoscópios , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Dente/patologiaRESUMO
Next to conventional cancer therapies, immunotherapies such as immune checkpoint inhibitors have broadened the cancer treatment landscape over the past decades. Recent advances in next generation sequencing and bioinformatics technologies have made it possible to identify a patient's own immunogenic neoantigens. These cancer neoantigens serve as important targets for personalized immunotherapy which has the benefit of being more active and effective in targeting cancer cells. This paper is a step-by-step guide discussing the different analyses and challenges encountered during in-silico neoantigen prediction. The protocol describes all the tools and steps required for the identification of immunogenic neoantigens.
Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Neoplasias/genética , Neoplasias/terapia , Biologia Computacional , Imunoterapia/métodosRESUMO
BACKGROUND: Genome-sequencing studies have led to an immense increase in the number of known single-nucleotide polymorphisms (SNPs). Designing primers that anneal to regions devoid of SNPs has therefore become challenging. We studied the impact of one or more mismatches in primer-annealing sites on different quantitative PCR (qPCR)-related parameters, such as quantitative cycle (Cq), amplification efficiency, and reproducibility. METHODS: We used synthetic templates and primers to assess the effect of mismatches at primer-annealing sites on qPCR assay performance. Reactions were performed with 5 commercially available master mixes. We studied the effects of the number, type, and position of priming mismatches on Cq value, PCR efficiency, reproducibility, and yield. RESULTS: The impact of mismatches was most pronounced for the number of mismatched nucleotides and for their distance from the 3' end of the primer. In addition, having ≥4 mismatches in a single primer or having 3 mismatches in one primer and 2 in the other was required to block a reaction completely. Finally, the degree of the mismatch effect was concentration independent for single mismatches, whereas concentration independence failed at higher template concentrations as the number of mismatches increased. CONCLUSIONS: Single mismatches located >5 bp from the 3' end have a moderate effect on qPCR amplification and can be tolerated. This finding, together with the concentration independence for single mismatches and the complete blocking of the PCR reaction for ≥4 mismatches, can help to chart mismatch behavior in qPCR reactions and increase the rate of successful primer design for sequences with a high SNP density or for homologous regions of sequence.
Assuntos
Pareamento Incorreto de Bases , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos TestesRESUMO
Compromised RNA quality is suggested to lead to unreliable results in gene expression studies. Therefore, assessment of RNA integrity and purity is deemed essential prior to including samples in the analytical pipeline. This may be of particular importance when diagnostic, prognostic or therapeutic conclusions depend on such analyses. In this study, the comparative value of six RNA quality parameters was determined using a large panel of 740 primary tumour samples for which real-time quantitative PCR gene expression results were available. The tested parameters comprise of microfluidic capillary electrophoresis based 18S/28S rRNA ratio and RNA Quality Index value, HPRT1 5'-3' difference in quantification cycle (Cq) and HPRT1 3' Cq value based on a 5'/3' ratio mRNA integrity assay, the Cq value of expressed Alu repeat sequences and a normalization factor based on the mean expression level of four reference genes. Upon establishment of an innovative analytical framework to assess impact of RNA quality, we observed a measurable impact of RNA quality on the variation of the reference genes, on the significance of differential expression of prognostic marker genes between two cancer patient risk groups, and on risk classification performance using a multigene signature. This study forms the basis for further rational assessment of reverse transcription quantitative PCR based results in relation to RNA quality.
Assuntos
Perfilação da Expressão Gênica/normas , RNA Mensageiro/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Eletroforese em Microchip , Humanos , RNA Mensageiro/análise , RNA Neoplásico/análise , RNA Neoplásico/normasRESUMO
While a growing body of evidence implicates regulatory miRNA modules in various aspects of human disease and development, insights into specific miRNA function remain limited. Here, we present an innovative approach to elucidate tissue-specific miRNA functions that goes beyond miRNA target prediction and expression correlation. This approach is based on a multi-level integration of corresponding miRNA and mRNA gene expression levels, miRNA target prediction, transcription factor target prediction and mechanistic models of gene network regulation. Predicted miRNA functions were either validated experimentally or compared to published data. The predicted miRNA functions are accessible in the miRNA bodymap, an interactive online compendium and mining tool of high-dimensional newly generated and published miRNA expression profiles. The miRNA bodymap enables prioritization of candidate miRNAs based on their expression pattern or functional annotation across tissue or disease subgroup. The miRNA bodymap project provides users with a single one-stop data-mining solution and has great potential to become a community resource.
Assuntos
MicroRNAs/metabolismo , Software , Animais , Linhagem Celular Tumoral , Mineração de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Humanos , Camundongos , Modelos Genéticos , Anotação de Sequência Molecular , RNA Mensageiro/metabolismo , Ratos , Fatores de Transcrição/metabolismoRESUMO
A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead. We provide an in-depth overview of the current state of the field with an emphasis on in silico neoantigen discovery and the clinical aspects that need to be addressed to unlock the full potential of this therapy.
Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Imunoterapia , Linfócitos TRESUMO
PURPOSE: Leber congenital amaurosis (LCA) is a rare congenital retinal dystrophy associated with 16 genes. Recent breakthroughs in LCA gene therapy offer the first prospect of treating inherited blindness, which requires an unequivocal and early molecular diagnosis. While present genetic tests do not address this due to a tremendous genetic heterogeneity, massively parallel sequencing (MPS) strategies might bring a solution. Here, we developed a comprehensive molecular test for LCA based on targeted MPS of all exons of 16 known LCA genes. METHODS: We designed a unique and flexible workflow for targeted resequencing of all 236 exons from 16 LCA genes based on quantitative PCR (qPCR) amplicon ligation, shearing, and parallel sequencing of multiple patients on a single lane of a short-read sequencer. Twenty-two prescreened LCA patients were included, five of whom had a known molecular cause. RESULTS: Validation of 107 variations was performed as proof of concept. In addition, the causal genetic defect and a single heterozygous mutation were identified in 3 and 5, respectively, of 17 patients without previously identified mutations. CONCLUSION: We propose a novel targeted MPS-based approach that is suitable for accurate, fast, and cost-effective early molecular testing in LCA, and easily applicable in other genetic disorders.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Amaurose Congênita de Leber/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Proteínas Adaptadoras de Transdução de Sinal , Antígenos de Neoplasias/genética , Biomarcadores/análise , Cegueira/congênito , Cegueira/genética , Proteínas de Transporte/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Consanguinidade , Proteínas do Citoesqueleto , Éxons/genética , Proteínas do Olho/genética , Heterogeneidade Genética , Guanilato Ciclase/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Humanos , Amaurose Congênita de Leber/genética , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de Superfície Celular/genética , Transativadores/genética , Estudos de Validação como Assunto , cis-trans-Isomerases/genéticaRESUMO
INTRODUCTION: Next-generation sequencing applications are becoming indispensable for clinical diagnostics. These experiments require numerous wet- and dry-laboratory steps, each one increasing the probability of a sample swap or contamination. Therefore, identity confirmation at the end of the process is recommended to ensure the right data are used for each patient. METHODS: We tested three commercially available, single nucleotide polymorphism (SNP)-based sample tracking kits in a diagnostic workflow to evaluate their ease of use and performance. The coverage uniformity, on-target specificity, sample identification, and genotyping performance were determined to assess the reliability and cost effectiveness of each kit. RESULTS AND DISCUSSION: Hands-on time and manual steps are almost identical for the kits from pxlence and Nimagen. The Swift kit has an extra purification step, making it the longest and most demanding protocol. Furthermore, the Swift kit failed to correctly genotype 26 of the 46 samples. The Nimagen kit identified all but one sample and the pxlence kit unambiguously identified all samples, making it the most reliable and robust kit of this evaluation. The Nimagen kit showed poor on-target mapping rates, resulting in deeper sequencing needs and higher sequencing costs compared with the other two kits. CONCLUSION: Our conclusion is that the Human Sample ID kit from pxlence is the most cost effective of the three tested tools for DNA sample tracking and identification.
Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Sequenciamento do Exoma , Fluxo de TrabalhoRESUMO
In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett's esophagus. Per patient, a blood plasma sample, and a healthy and disease esophageal tissue sample were included. In total, this comprehensive dataset consists of 102 sequenced libraries from 51 samples. Based on this data, 119 expression profiles are available for three biotypes, including miRNA (51), mRNA (51) and circRNA (17). This unique resource allows for discovery of novel biomarkers and disease mechanisms, comparison of tissue and liquid biopsy profiles, integration of coding and non-coding RNA patterns, and can serve as a validation dataset in other RNA landscaping studies. Moreover, structural RNA differences can be identified in this dataset, including protein coding mutations, fusion genes, and circular RNAs.
Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , MicroRNAs , Adenocarcinoma/sangue , Adenocarcinoma/genética , Esôfago de Barrett/sangue , Esôfago de Barrett/genética , Biomarcadores , Progressão da Doença , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/genética , Humanos , MicroRNAs/genética , Plasma/metabolismoRESUMO
RTPrimerDB (http://www.rtprimerdb.org) is a freely accessible database and analysis tool for real-time quantitative PCR assays. RTPrimerDB includes records with user submitted assays that are linked to genome information from reference databases and quality controlled using an in silico assay evaluation system. The primer evaluation tools intended to assess the specificity and to detect features that could negatively affect the amplification efficiency are combined into a pipeline to test custom-designed primer and probe sequences. An improved user feedback system guides users and submitters to enter practical remarks and details about experimental evaluation analyses. The database is linked with reference databases to allow the submission of assays for all genes and organisms officially registered in Entrez Gene and RefSeq. Records in RTPrimerDB are assigned unique and stable identifiers. The content is provided via an interactive web-based search system and is available for download in the recently developed RDML format and as bulk export file. RTPrimerDB is a one-stop portal for high-quality and highly annotated real-time PCR assays.
Assuntos
Primers do DNA/química , Bases de Dados de Ácidos Nucleicos , Sondas de Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Interface Usuário-ComputadorRESUMO
The quantitative polymerase chain reaction (qPCR) is widely utilized for gene expression analysis. However, the lack of robust strategies for cross laboratory data comparison hinders the ability to collaborate or perform large multicentre studies conducted at different sites. In this study we introduced and validated a workflow that employs universally applicable, quantifiable external oligonucleotide standards to address this question. Using the proposed standards and data-analysis procedure, we obtained a perfect concordance between expression values from eight different genes in 366 patient samples measured on three different qPCR instruments and matching software, reagents, plates and seals, demonstrating the power of this strategy to detect and correct inter-run variation and to enable exchange of data between different laboratories, even when not using the same qPCR platform.
Assuntos
Primers do DNA/normas , Expressão Gênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Calibragem , HumanosRESUMO
The XML-based Real-Time PCR Data Markup Language (RDML) has been developed by the RDML consortium (http://www.rdml.org) to enable straightforward exchange of qPCR data and related information between qPCR instruments and third party data analysis software, between colleagues and collaborators and between experimenters and journals or public repositories. We here also propose data related guidelines as a subset of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to guarantee inclusion of key data information when reporting experimental results.