Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(30): 14893-14898, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285331

RESUMO

Fibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency. Both 30- and 90-nm-diameter AgNWs are readily internalized by cells, but thinner NWs are mechanically crumpled by the forces imposed during or after endocytosis, while thicker nanowires puncture the enclosing membrane and release silver ions and lysosomal contents to the cytoplasm, thereby initiating oxidative stress. This finding extends the fiber pathology paradigm and will enable the manufacture of safer products incorporating AgNWs.


Assuntos
Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Lisossomos/metabolismo , Nanofios/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Condutividade Elétrica , Fibroblastos/metabolismo , Peixes , Humanos , Camundongos , Nanofios/química , Estresse Oxidativo , Prata/química
2.
Int J Mol Sci ; 20(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635106

RESUMO

Iron Oxide Nanoparticles (IONPs) present unique properties making them one of the most used NPs in the biomedical field. Nevertheless, for many years, growing production and use of IONPs are associated with risks that can affect human and the environment. Thus, it is essential to study the effects of these nanoparticles to better understand their mechanism of action and the molecular perturbations induced in the organism. In the present study, we investigated the toxicological effects of IONPs (γ-Fe2O3) on liver, lung and brain proteomes in Wistar rats. Exposed rats received IONP solution during 7 consecutive days by intranasal instillation at a dose of 10 mg/kg body weight. An iTRAQ-based quantitative proteomics was used to study proteomic variations at the level of the three organs. Using this proteomic approach, we identified 1565; 1135 and 1161 proteins respectively in the brain, liver and lung. Amon them, we quantified 1541; 1125 and 1128 proteins respectively in the brain, liver and lung. Several proteins were dysregulated comparing treated samples to controls, particularly, proteins involved in cytoskeleton remodeling, cellular metabolism, immune system stimulation, inflammation process, response to oxidative stress, angiogenesis, and neurodegenerative diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Compostos Férricos/administração & dosagem , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas , Proteoma , Proteômica , Animais , Biomarcadores , Encéfalo/metabolismo , Fígado/metabolismo , Masculino , Proteômica/métodos , Ratos , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade/métodos
3.
J Proteome Res ; 13(11): 4695-704, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25029028

RESUMO

KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Redes e Vias Metabólicas/fisiologia , Proteômica/métodos , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Glicólise/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Redes e Vias Metabólicas/genética , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/fisiologia , Proteínas Proto-Oncogênicas p21(ras) , Espectrometria de Massas em Tandem
4.
Mol Cell Proteomics ; 8(3): 506-18, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18936056

RESUMO

Sulfation and phosphorylation are post-translational modifications imparting an isobaric 80-Da addition on the side chain of serine, threonine, or tyrosine residues. These two post-translational modifications are often difficult to distinguish because of their similar MS fragmentation patterns. Targeted MS identification of these modifications in specific proteins commonly relies on their prior separation using gel electrophoresis and silver staining. In the present investigation, we report a potential pitfall in the interpretation of these modifications from silver-stained gels due to artifactual sulfation of serine, threonine, and tyrosine residues by sodium thiosulfate, a commonly used reagent that catalyzes the formation of metallic silver deposits onto proteins. Detailed MS analyses of gel-separated protein standards and Escherichia coli cell extracts indicated that several serine, threonine, and tyrosine residues were sulfated using silver staining protocols but not following Coomassie Blue staining. Sodium thiosulfate was identified as the reagent leading to this unexpected side reaction, and the degree of sulfation was correlated with increasing concentrations of thiosulfate up to 0.02%, which is typically used for silver staining. The significance of this artifact is discussed in the broader context of sulfation and phosphorylation site identification from in vivo and in vitro experiments.


Assuntos
Artefatos , Proteínas/metabolismo , Coloração pela Prata/métodos , Sulfatos/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cricetinae , Escherichia coli/metabolismo , Humanos , Hidroxilação/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/química , Dados de Sequência Molecular , Peptídeos/química , Fosfopiruvato Hidratase/química , Fosforilação/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Tiossulfatos/farmacologia
5.
J Proteomics ; 195: 114-124, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30660770

RESUMO

KDAC inhibitors (KDACi) overcome gefitinib primary resistance in non-small cell lung cancer (NSCLC) including mutant-KRAS lung adenocarcinoma. To identify which proteins are involved in the restoration of this sensitivity and to provide new therapeutic targets for mutant-KRAS lung adenocarcinoma, we performed an iTRAQ quantitative proteomic analysis after subcellular fractionation of H358-NSCLC treated with gefitinib and KDACi (TSA/NAM) versus gefitinib alone. The 86 proteins found to have been significantly dysregulated between the two conditions, were mainly involved in cellular metabolism and cell transcription processes. As expected, the pathway related to histone modifications was affected by the KDACi. Pathways known for controlling tumor development and (chemo)-resistance (miRNA biogenesis/glutathione metabolism) were affected by the KDACi/gefitinib treatment. Moreover, 57 dysregulated proteins were upstream of apoptosis (such as eEF1A2 and STAT1) and hence provide potential therapeutic targets. The inhibition by siRNA of eEF1A2 expression resulted in a slight decrease in H358-NSCLC viability. In addition, eEF1A2 and STAT1 siRNA transfections suggested that both STAT1 and eEF1A2 prevent AKT phosphorylation known for enhancing gefitinib resistance in NSCLC. Therefore, altogether our data provide new insights into proteome regulations in the context of overcoming the NSCLC resistance to gefitinib through KDACi in H358 KRAS mutated and amphiregulin-overexpressing NSCLC cells.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Mutação , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Food Chem Toxicol ; 127: 173-181, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30878530

RESUMO

Iron Oxide Nanoparticles (IONPs) are used in several fields of application, mainly in the biomedical field for their magnetic properties and in food additive known as "E172" for their colour. In the present investigation, we focused on IONP effects on Wistar rat following acute oral exposure. We performed a multiscale physiopathological investigation in order to elucidate potential toxic effects linked to IONP ingestion, especially on cognitive capacities, trace element distribution, blood constituents, organ functions, organ structure and iron deposit. We demonstrated that oral exposure to IONPs induces disturbances of certain parameters depending on the dose. Interestingly, the histopathological examination evidenced inflammatory effects of IONPs in the liver with iron deposits in hepatocytes and Kuppfer cells. Neurobehavioral examination showed that oral exposure to IONPs did not affect nor rat emotions, exploration and locomotion capacities, nor spatial reference memory status. Furthermore, oral administration of IONPs did not disrupt the trace element homeostasis nor in the liver neither in the stomach. Altogether, our study evidenced low signs of toxicity, but some effects lead us to a careful use of these NPs. Thereby, their use in foods should be further studied to better evaluate the potential toxic risks of the oral exposure to IONPs.


Assuntos
Cognição/efeitos dos fármacos , Exposição Dietética , Compostos Férricos/análise , Compostos Férricos/farmacocinética , Nanopartículas Metálicas , Oligoelementos/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Testes de Química Clínica , Compostos Férricos/química , Testes Hematológicos , Homeostase , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Nanopartículas Metálicas/química , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar , Distribuição Tecidual , Testes de Toxicidade Aguda/métodos
7.
Nanotoxicology ; 13(8): 1021-1040, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132913

RESUMO

Nanomaterials have gained much attention for their use and benefit in several fields. Iron Oxide Nanoparticles (IONPs) have been used in Biomedicine as contrast agents for imaging cancer cells. However, several studies reported the potential toxicity of those nanoparticles in different models, especially in cells. Therefore, in our present study, we investigated the effects of IONPs on the SH-SY5Y neuroblastoma cell line. We carried out cytotoxic and genotoxic studies to evaluate the phenotypic effects, and proteomic investigation to evaluate the molecular effects and the mechanisms by which this kind of NPs could induce toxicity. Our results showed that the use of three different sizes of IONPs (14, 22 and 30 nm) induced cell detachment, cell morphological changes, size, and concentration-dependent IONP internalization and cell mortality. IONPs induced slight genotoxic damage assayed by modified comet assay without affecting cell cycle, mitochondrial function, membrane integrity, intracellular calcium level, and without inducing ROS generation. All the studies were performed to compare also the effects of IONPs to the ferric iron by incubating cells with equivalent concentration of FeCl3. In all tests, the NPs exhibited more toxicity than the ferric iron. The proteomic analysis followed by gene ontology and pathway analysis evidenced the effects of IONPs on cytoskeleton, cell apoptosis, and cancer development. Our findings provided more information about IONP effects on human cells and especially on cancer cell line.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Proteoma/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Compostos Férricos/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/química , Tamanho da Partícula , Proteômica , Espécies Reativas de Oxigênio/metabolismo
8.
J Trace Elem Med Biol ; 50: 73-79, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262319

RESUMO

Engineered nanomaterials are used in various applications due to their particular properties. Among them, Iron Oxide Nanoparticles (Fe2O3-NPs) are used in Biomedicine as theranostic agents i.e. contrast agents in Magnetic Resonance Imaging and cancer treatment. With the increasing production and use of these Fe2O3-NPs, there is an evident raise of Fe2O3-NPs exposure and subsequently a higher risk of adverse outcomes for the environment and Human. In the present paper, we investigated the effects of an intravenous daily Fe2O3-NPs exposure on Wistar rat for one week. As results, we showed that several hematological parameters and transaminase (ALT and AST) levels as well as organ histology remained unchanged in treated rats. Neither the catecholamine levels nor the emotional behavior and learning / memory capacities of rats were impacted by the sub-acute intravenous exposure to Fe2O3-NPs. However, iron level in plasma and iron content homeostasis in brain were disrupted after this exposure. Thus, our results demonstrated that Fe2O3-NPs could have transient effects on rat but the intravenous route is still safer that others which is encouraging for their use in medical and/or biological applications.


Assuntos
Catecolaminas/metabolismo , Cognição/efeitos dos fármacos , Compostos Férricos/efeitos adversos , Compostos Férricos/química , Ferro/sangue , Ferro/metabolismo , Nanopartículas Metálicas/efeitos adversos , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Environ Sci Pollut Res Int ; 25(17): 16922-16932, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29623644

RESUMO

Over the last decades, engineered nanomaterials have been widely used in various applications due to their interesting properties. Among them, iron oxide nanoparticles (IONPs) are used as theranostic agents for cancer, and also as contrast agents in magnetic resonance imaging. With the increasing production and use of these IONPs, there is an evident raise of IONP exposure and subsequently a higher risk of adverse outcome for humans and the environment. In this work, we aimed to investigate the effects of sub-acute IONP exposure on Wistar rat, particularly (i) on the emotional and learning/memory behavior, (ii) on the hematological and biochemical parameters, (iii) on the neurotransmitter content, and (vi) on the trace element homeostasis. Rats were treated during seven consecutive days by intranasal instillations at a dose of 10 mg/kg body weight. The mean body weight increased significantly in IONP-exposed rats. Moreover, several hematological parameters were normal in treated rats except the platelet count which was increased. The biochemical study revealed that phosphatase alkaline level decreased in IONP-exposed rats, but no changes were observed for the other hepatic enzymes (ALT and AST) levels. The trace element homeostasis was slightly modulated by IONP exposure. Sub-acute intranasal exposure to IONPs increased dopamine and norepinephrine levels in rat brain; however, it did not affect the emotional behavior, the anxiety index, and the learning/memory capacities of rats.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Neurotransmissores/química , Oligoelementos/química , Animais , Compostos Férricos/efeitos adversos , Compostos Férricos/metabolismo , Homeostase , Humanos , Inflamação , Imageamento por Ressonância Magnética , Neurotransmissores/efeitos adversos , Ratos , Ratos Wistar
10.
Nanomaterials (Basel) ; 8(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641466

RESUMO

Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag⁺ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products.

11.
Oxid Med Cell Longev ; 2017: 5140360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626498

RESUMO

Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging.


Assuntos
Proteínas/metabolismo , Envelhecimento da Pele/patologia , Tubulina (Proteína)/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Humanos , Masculino
12.
Endocrine ; 28(2): 137-44, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16388085

RESUMO

DAX-1 is an unusual orphan nuclear receptor whose mutations cause adrenal hypoplasia congenita (AHC) associated with hypogonadotropic hypogonadism (HHG). Subcellular localization of DAX-1 is a critical determinant of its biological activity. Indeed, the missense mutants found in AHC patients have an impaired transcriptional repressor activity due to protein misfolding and shift of their localization to the cytoplasm. For this reason, we sought to identify factors that regulate DAX-1 subcellular localization. Of several stimuli and chemical compounds tested, heat shock was the only stimulus able to induce rapid and massive relocalization of DAX-1 in the cytoplasm. The heat shock effect is reversible and does not involve stimulation of the p38 and ERK pathways. Heat shock probably acts by inducing modifications of DAX-1 and increasing its partitioning in the insoluble cellular fraction.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Temperatura Alta , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/metabolismo , Transporte Ativo do Núcleo Celular , Receptor Nuclear Órfão DAX-1 , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnica Direta de Fluorescência para Anticorpo , Células HeLa , Humanos , Carioferinas/metabolismo , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Solubilidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína Exportina 1
13.
Proc Natl Acad Sci U S A ; 99(12): 8225-30, 2002 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-12034880

RESUMO

Mutations in the DAX-1 [dosage-sensitive sex reversal-adrenal hypoplasia congenita (AHC) critical region on the X chromosome; NR0B1] gene cause X-linked AHC associated with hypogonadotropic hypogonadism. DAX-1 encodes an unusual orphan member of the nuclear hormone receptor superfamily, acting as a transcriptional repressor of genes involved in the steroidogenic pathway. All DAX-1 mutations found in AHC patients alter the protein C terminus, which shares similarity to the ligand binding domain of nuclear hormone receptors and bears transcriptional repressor activity. This property is invariably impaired in DAX-1 AHC mutants. Here we show that the localization of DAX-1 AHC mutant proteins is drastically shifted toward the cytoplasm, even if their nuclear localization signal, which resides in the N terminal of the protein, is intact. Cytoplasmic localization of DAX-1 AHC mutants correlates with an impairment in their transcriptional repression activity. These results reveal a critical role of an intact C terminus in determining DAX-1 subcellular localization and constitute an important example of a defect in human organogenesis caused by impaired nuclear localization of a transcription factor.


Assuntos
Insuficiência Adrenal/genética , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Cromossomo X , Insuficiência Adrenal/congênito , Animais , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Receptor Nuclear Órfão DAX-1 , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Receptores do Ácido Retinoico/deficiência , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção
14.
Hum Mol Genet ; 12(9): 1063-72, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12700175

RESUMO

Mutations in the DAX-1 (NR0B1) gene cause the X-linked form of adrenal hypoplasia congenita (AHC), which is constantly found associated with hypogonadotropic hypogonadism (HHG). DAX-1 encodes an atypical orphan member of the nuclear hormone receptor superfamily. DAX-1 acts at multiple levels to repress the expression of genes involved in steroid hormone metabolism through a potent transcriptional repression domain present in its C-terminus, which is similar to the nuclear receptors' ligand binding domain. All DAX-1 mutations causing AHC/HHG alter the protein C-terminal domain, impairing its nuclear localization and, consequently, its transcriptional repression activity. Here we show that DAX-1 AHC mutants have a misfolded conformation, which correlates with their cytoplasmic retention. Extensive structure-function analysis reveals that the chemical nature of amino acid residues at positions interested by AHC mutations and critical determinants in helix 12 affect DAX-1 nuclear localization and transcriptional silencing. Surprisingly, mutations in a conserved putative corepressor binding surface have a negative effect upon DAX-1 transcriptional repression only when they also affect protein expression levels. These data suggest that a folding defect underlies the impaired function of DAX-1 missense mutants found in AHC/HHG patients and that interactions with transcriptional cofactors different from known corepressors mediate DAX-1 silencing properties.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Proteínas de Ligação a DNA/genética , Receptores do Ácido Retinoico/genética , Proteínas Repressoras/genética , Relação Estrutura-Atividade , Hiperplasia Suprarrenal Congênita/metabolismo , Substituição de Aminoácidos , Receptor Nuclear Órfão DAX-1 , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA