Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 102(3): 1211-1261, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001666

RESUMO

Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum (ER/SR). Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of six membrane occupation and recognition nexus (MORN) motifs, a joining region connecting these to another set of two MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.


Assuntos
Proteínas de Membrana , Doenças Musculares , Membrana Celular/metabolismo , Fenômenos Fisiológicos Celulares , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(27): e2400497121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917010

RESUMO

S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.


Assuntos
Cálcio , Microscopia Crioeletrônica , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas S100 , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas S100/metabolismo , Proteínas S100/química , Cálcio/metabolismo , Animais , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Humanos
3.
Circulation ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910563

RESUMO

BACKGROUND: Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aim to investigate the intracellular buffering of calcium and its potential arrhythmogenic role in persAF. METHODS: Simultaneous transmembrane fluxes (patch-clamp) and intracellular Ca2+ signaling (fluo-3-acetoxymethyl ester) were recorded in myocytes from right atrial biopsies of sinus rhythm (control) and patients with persAF, alongside human atrial subtype induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Protein levels were quantified by immunoblotting of human atrial tissue and induced pluripotent stem cell-derived cardiac myocytes. Mouse whole heart and atrial electrophysiology was measured on a Langendorff system. RESULTS: Cytosolic Ca2+ buffering was decreased in atrial myocytes of patients with persAF because of a depleted amount of Ca2+ buffers. In agreement, protein levels of selected Ca2+ binding myofilament proteins, including cTnC (cardiac troponin C), a major cytosolic Ca2+ buffer, were significantly lower in patients with persAF. Small interfering RNA (siRNA)-mediated knockdown of cTnC in induced pluripotent stem cell-derived cardiac myocytes (si-cTnC) phenocopied the reduced cytosolic Ca2+ buffering observed in persAF. Si-cTnC induced pluripotent stem cell-derived cardiac myocytes exhibited a higher predisposition to spontaneous Ca2+ release events and developed action potential alternans at low stimulation frequencies. Last, indirect reduction of cytosolic Ca2+ buffering using blebbistatin in an ex vivo mouse whole heart model increased vulnerability to tachypacing-induced atrial arrhythmia, validating the direct mechanistic link between impaired cytosolic Ca2+ buffering and atrial arrhythmogenesis. CONCLUSIONS: Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and AF susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in AF management.

4.
Circ Res ; 133(2): e19-e46, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313752

RESUMO

BACKGROUND: Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS: We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS: We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS: Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Deficiências de Ferro , Humanos , Miócitos Cardíacos/metabolismo , Mutação , Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Ferro/metabolismo , Clatrina/genética , Clatrina/metabolismo , Clatrina/farmacologia
5.
J Mol Cell Cardiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960317

RESUMO

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

6.
Am J Physiol Heart Circ Physiol ; 326(3): H599-H611, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180453

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into atrial and ventricular cardiomyocytes to allow for personalized drug screening. A hallmark of differentiation is the manifestation of spontaneous beating in a two-dimensional (2-D) cell culture. However, an outstanding observation is the high variability in this maturation process. We valued that contractile parameters change during differentiation serving as an indicator of maturation. Consequently, we recorded noninvasively spontaneous motion activity during the differentiation of male iPSC toward iPSC cardiomyocytes (iPSC-CMs) to further analyze similar maturated iPSC-CMs. Surprisingly, our results show that identical differentiations into ventricular iPSC-CMs are variable with respect to contractile parameters resulting in two distinct subpopulations of ventricular-like cells. In contrast, differentiation into atrial iPSC-CMs resulted in only one phenotype. We propose that the noninvasive and cost-effective recording of contractile activity during maturation using a smartphone device may help to reduce the variability in results frequently reported in studies on ventricular iPSC-CMs.NEW & NOTEWORTHY Differentiation of induced pluripotent stem cells (iPSCs) into iPSC-derived cardiomyocytes (iPSC-CMs) exhibits a high variability in mature parameters. Here, we monitored noninvasively contractile parameters of iPSC-CM during full-time differentiation using a smartphone device. Our results show that parallel maturations of iPSCs into ventricular iPSC-CMs, but not into atrial iPSC-CMs, resulted in two distinct subpopulations of iPSC-CMs. These findings suggest that our cost-effective method may help to compare iPSC-CMs at the same maturation level.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Miócitos Cardíacos , Diferenciação Celular , Fenótipo , Ventrículos do Coração
7.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542157

RESUMO

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Assuntos
DNA , Telômero , Humanos , Hibridização in Situ Fluorescente/métodos , Telômero/genética , Ciclo Celular/genética , Divisão Celular
10.
Eur Heart J ; 43(40): 4195-4207, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822895

RESUMO

AIMS: Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS: In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION: The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.


Assuntos
Canais de Cátion TRPM , Taquicardia Ventricular , Camundongos , Animais , Cálcio/metabolismo , Ácido Meclofenâmico/metabolismo , Arritmias Cardíacas , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo
11.
J Mol Cell Cardiol ; 165: 141-157, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35033544

RESUMO

Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following ß-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3',5'-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas ß-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas ß-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters.


Assuntos
Adenilil Ciclases , Canal de Liberação de Cálcio do Receptor de Rianodina , Adenilil Ciclases/metabolismo , Adrenérgicos , Cálcio/metabolismo , Sinalização do Cálcio , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
J Mol Cell Cardiol ; 173: 1-15, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084744

RESUMO

The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.


Assuntos
Estenose da Valva Aórtica , Transplante de Coração , Implante de Prótese de Valva Cardíaca , Humanos , Implante de Prótese de Valva Cardíaca/métodos , Volume Sistólico , Microscopia , Proteômica , Canal de Liberação de Cálcio do Receptor de Rianodina , Doadores de Tecidos , Valva Aórtica , Função Ventricular Esquerda/fisiologia , Biópsia , Resultado do Tratamento
13.
EMBO J ; 37(1): 139-159, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29146773

RESUMO

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Assuntos
Fixadores/química , Formaldeído/química , Glioxal/química , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Fixação de Tecidos/métodos , Animais , Células COS , Chlorocebus aethiops , Drosophila melanogaster , Células HeLa , Humanos , Camundongos
14.
Proc Natl Acad Sci U S A ; 116(50): 25126-25136, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757849

RESUMO

Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Quinases , Proteostase/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Microscopia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcômeros/metabolismo , Análise de Célula Única
15.
Circulation ; 142(12): 1159-1172, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32683896

RESUMO

BACKGROUND: Enhanced diastolic calcium (Ca2+) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca2+/calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. METHODS: Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca2+ leak in atrial cardiomyocytes was assessed using confocal Ca2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. RESULTS: Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca2+ spark frequency in atrial cardiomyocytes with Ca2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. CONCLUSIONS: Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Fibrilação Atrial/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
16.
Hum Genet ; 140(12): 1679-1693, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34545459

RESUMO

The highly conserved YrdC domain-containing protein (YRDC) interacts with the well-described KEOPS complex, regulating specific tRNA modifications to ensure accurate protein synthesis. Previous studies have linked the KEOPS complex to a role in promoting telomere maintenance and controlling genome integrity. Here, we report on a newborn with a severe neonatal progeroid phenotype including generalized loss of subcutaneous fat, microcephaly, growth retardation, wrinkled skin, renal failure, and premature death at the age of 12 days. By trio whole-exome sequencing, we identified a novel homozygous missense mutation, c.662T > C, in YRDC affecting an evolutionary highly conserved amino acid (p.Ile221Thr). Functional characterization of patient-derived dermal fibroblasts revealed that this mutation impairs YRDC function and consequently results in reduced t6A modifications of tRNAs. Furthermore, we established and performed a novel and highly sensitive 3-D Q-FISH analysis based on single-telomere detection to investigate the impact of YRDC on telomere maintenance. This analysis revealed significant telomere shortening in YRDC-mutant cells. Moreover, single-cell RNA sequencing analysis of YRDC-mutant fibroblasts revealed significant transcriptome-wide changes in gene expression, specifically enriched for genes associated with processes involved in DNA repair. We next examined the DNA damage response of patient's dermal fibroblasts and detected an increased susceptibility to genotoxic agents and a global DNA double-strand break repair defect. Thus, our data suggest that YRDC may affect the maintenance of genomic stability. Together, our findings indicate that biallelic variants in YRDC result in a developmental disorder with progeroid features and might be linked to increased genomic instability and telomere shortening.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Ligação ao GTP/genética , Progéria/genética , Proteínas de Ligação a RNA/genética , Alelos , Consanguinidade , Dano ao DNA , Deficiências do Desenvolvimento/patologia , Genoma Humano , Instabilidade Genômica , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação , Linhagem , Progéria/patologia , RNA de Transferência/genética , Análise de Sequência de RNA , Encurtamento do Telômero
17.
Am J Physiol Heart Circ Physiol ; 321(2): H446-H460, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270372

RESUMO

In conditions with abnormally increased activity of the cardiac ryanodine receptor (RyR2), Ca2+/calmodulin-dependent protein kinase II (CaMKII) can contribute to a further destabilization of RyR2 that results in triggered arrhythmias. Therefore, inhibition of CaMKII in such conditions has been suggested as a strategy to suppress RyR2 activity and arrhythmias. However, suppression of RyR2 activity can lead to the development of arrhythmogenic Ca2+ alternans. The aim of this study was to test whether the suppression of RyR2 activity caused by inhibition of CaMKII increases propensity for Ca2+ alternans. We studied spontaneous Ca2+ release events and Ca2+ alternans in isolated left ventricular cardiomyocytes from mice carrying the gain-of-function RyR2 mutation RyR2-R2474S and from wild-type mice. CaMKII inhibition by KN-93 effectively decreased the frequency of spontaneous Ca2+ release events in RyR2-R2474S cardiomyocytes exposed to the ß-adrenoceptor agonist isoprenaline. However, KN-93-treated RyR2-R2474S cardiomyocytes also showed increased propensity for Ca2+ alternans and increased Ca2+ alternans ratio compared with both an inactive analog of KN-93 and with vehicle-treated controls. This increased propensity for Ca2+ alternans was explained by prolongation of Ca2+ release refractoriness. Importantly, the increased propensity for Ca2+ alternans in KN-93-treated RyR2-R2474S cardiomyocytes did not surpass that of wild type. In conclusion, inhibition of CaMKII efficiently reduces spontaneous Ca2+ release but promotes Ca2+ alternans in RyR2-R2474S cardiomyocytes with a gain-of-function RyR2 mutation. The dominant effect in RyR2-R2474S is to reduce spontaneous Ca2+ release, which supports this intervention as a therapeutic strategy in this specific condition. However, future studies on CaMKII inhibition in conditions with increased propensity for Ca2+ alternans should include investigation of both phenomena.NEW & NOTEWORTHY Genetically increased RyR2 activity promotes arrhythmogenic Ca2+ release. Inhibition of CaMKII suppresses RyR2 activity and arrhythmogenic Ca2+ release. Suppression of RyR2 activity prolongs refractoriness of Ca2+ release. Prolonged refractoriness of Ca2+ release leads to arrhythmogenic Ca2+ alternans. CaMKII inhibition promotes Ca2+ alternans by prolonging Ca2+ release refractoriness.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Taquicardia Ventricular/genética , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Benzilaminas/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação com Ganho de Função , Ventrículos do Coração/citologia , Isoproterenol/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacologia , Taquicardia Ventricular/metabolismo
18.
Circulation ; 140(8): 681-693, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31185731

RESUMO

BACKGROUND: Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS: Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS: Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS: PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.


Assuntos
Fibrilação Atrial/metabolismo , Miócitos Cardíacos/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Fibrilação Atrial/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Camundongos Knockout , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1/metabolismo , Proteômica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 112(32): E4495-504, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26204914

RESUMO

Extrasystoles lead to several consequences, ranging from uneventful palpitations to lethal ventricular arrhythmias, in the presence of pathologies, such as myocardial ischemia. The role of working versus conducting cardiomyocytes, as well as the tissue requirements (minimal cell number) for the generation of extrasystoles, and the properties leading ectopies to become arrhythmia triggers (topology), in the normal and diseased heart, have not been determined directly in vivo. Here, we used optogenetics in transgenic mice expressing ChannelRhodopsin-2 selectively in either cardiomyocytes or the conduction system to achieve cell type-specific, noninvasive control of heart activity with high spatial and temporal resolution. By combining measurement of optogenetic tissue activation in vivo and epicardial voltage mapping in Langendorff-perfused hearts, we demonstrated that focal ectopies require, in the normal mouse heart, the simultaneous depolarization of at least 1,300-1,800 working cardiomyocytes or 90-160 Purkinje fibers. The optogenetic assay identified specific areas in the heart that were highly susceptible to forming extrasystolic foci, and such properties were correlated to the local organization of the Purkinje fiber network, which was imaged in three dimensions using optical projection tomography. Interestingly, during the acute phase of myocardial ischemia, focal ectopies arising from this location, and including both Purkinje fibers and the surrounding working cardiomyocytes, have the highest propensity to trigger sustained arrhythmias. In conclusion, we used cell-specific optogenetics to determine with high spatial resolution and cell type specificity the requirements for the generation of extrasystoles and the factors causing ectopies to be arrhythmia triggers during myocardial ischemia.


Assuntos
Complexos Cardíacos Prematuros/patologia , Miocárdio/patologia , Optogenética/métodos , Especificidade de Órgãos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Complexos Cardíacos Prematuros/complicações , Complexos Cardíacos Prematuros/fisiopatologia , Channelrhodopsins , Conexinas/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Fenômenos Eletrofisiológicos , Humanos , Integrases/metabolismo , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/patologia , Ramos Subendocárdicos/fisiopatologia , Proteína alfa-5 de Junções Comunicantes
20.
Biochim Biophys Acta ; 1863(7 Pt B): 1882-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26620800

RESUMO

Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Assuntos
Fibrilação Atrial/metabolismo , Função Atrial , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Sinalização do Cálcio , Diferenciação Celular , Linhagem da Célula , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Contração Miocárdica , Miócitos Cardíacos/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA