Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 67(4): 539-549.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28781235

RESUMO

Heteroduplex DNA (hetDNA) is a key molecular intermediate during the repair of mitotic double-strand breaks by homologous recombination, but its relationship to 5' end resection and/or 3' end extension is poorly understood. In the current study, we examined how perturbations in these processes affect the hetDNA profile associated with repair of a defined double-strand break (DSB) by the synthesis-dependent strand-annealing (SDSA) pathway. Loss of either the Exo1 or Sgs1 long-range resection pathway significantly shortened hetDNA, suggesting that these pathways normally collaborate during DSB repair. In addition, altering the processivity or proofreading activity of DNA polymerase δ shortened hetDNA length or reduced break-adjacent mismatch removal, respectively, demonstrating that this is the primary polymerase that extends both 3' ends. Data are most consistent with the extent of DNA synthesis from the invading end being the primary determinant of hetDNA length during SDSA.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Fúngico/metabolismo , Mitose , Ácidos Nucleicos Heteroduplexes/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Fúngico/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Genótipo , Mutação , Ácidos Nucleicos Heteroduplexes/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608460

RESUMO

Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Histidina Quinase/metabolismo , Ácidos Indolacéticos/farmacologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Transporte Biológico , Citocininas/metabolismo , Histidina Quinase/genética , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Plant Physiol ; 185(2): 457-468, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721897

RESUMO

Root system architecture (RSA) is a key factor in the efficiency of nutrient capture and water uptake in plants. Understanding the genetic control of RSA will be useful in minimizing fertilizer and water usage in agricultural cropping systems. Using a hydroponic screen and a gel-based imaging system, we identified a rice (Oryza sativa) gene, VAP-RELATED SUPPRESSOR OF TOO MANY MOUTHS1 (OsVST1), which plays a key role in controlling RSA. This gene encodes a homolog of the VAP-RELATED SUPPRESSORS OF TOO MANY MOUTHS (VST) proteins in Arabidopsis (Arabidopsis thaliana), which promote signaling in stomata by mediating plasma membrane-endoplasmic reticulum contacts. OsVST1 mutants have shorter primary roots, decreased root meristem size, and a more compact RSA. We show that the Arabidopsis VST triple mutants have similar phenotypes, with reduced primary root growth and smaller root meristems. Expression of OsVST1 largely complements the short root length and reduced plant height in the Arabidopsis triple mutant, supporting conservation of function between rice and Arabidopsis VST proteins. In a field trial, mutations in OsVST1 did not adversely affect grain yield, suggesting that modulation of this gene could be used as a way to optimize RSA without an inherent yield penalty.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Expressão Gênica , Hidroponia , Meristema/anatomia & histologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
4.
Proc Natl Acad Sci U S A ; 116(21): 10563-10567, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068462

RESUMO

Natural compounds capable of increasing root depth and branching are desirable tools for enhancing stress tolerance in crops. We devised a sensitized screen to identify natural metabolites capable of regulating root traits in Arabidopsis ß-Cyclocitral, an endogenous root compound, was found to promote cell divisions in root meristems and stimulate lateral root branching. ß-Cyclocitral rescued meristematic cell divisions in ccd1ccd4 biosynthesis mutants, and ß-cyclocitral-driven root growth was found to be independent of auxin, brassinosteroid, and reactive oxygen species signaling pathways. ß-Cyclocitral had a conserved effect on root growth in tomato and rice and generated significantly more compact crown root systems in rice. Moreover, ß-cyclocitral treatment enhanced plant vigor in rice plants exposed to salt-contaminated soil. These results indicate that ß-cyclocitral is a broadly effective root growth promoter in both monocots and eudicots and could be a valuable tool to enhance crop vigor under environmental stress.


Assuntos
Aldeídos/farmacologia , Diterpenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis
5.
Sensors (Basel) ; 19(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817334

RESUMO

Using sensors and electronic systems for characterization of plant traits provides valuable digital inputs to support complex analytical modeling in genetics research. In field applications, frequent sensor deployment enables the study of the dynamics of these traits and their interaction with the environment. This study focused on implementing lidar (light detection and ranging) technology to generate 2D displacement data at high spatial resolution and extract plant architectural parameters, namely canopy height and cover, in a diverse population of 252 maize (Zea mays L.) genotypes. A prime objective was to develop the mechanical and electrical subcomponents for field deployment from a ground vehicle. Data reduction approaches were implemented for efficient same-day post-processing to generate by-plot statistics. The lidar system was successfully deployed six times in a span of 42 days. Lidar data accuracy was validated through independent measurements in a subset of 75 experimental units. Manual and lidar-derived canopy height measurements were compared resulting in root mean square error (RMSE) = 0.068 m and r2 = 0.81. Subsequent genome-wide association study (GWAS) analyses for quantitative trait locus (QTL) identification and comparisons of genetic correlations and heritabilities for manual and lidar-based traits showed statistically significant associations. Low-cost, field-ready lidar of computational simplicity make possible timely phenotyping of diverse populations in multiple environments.

6.
PLoS Genet ; 9(3): e1003340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516370

RESUMO

The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)-containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ-containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ-containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs.


Assuntos
RNA Helicases DEAD-box/genética , DNA Helicases/genética , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Cromossomos Fúngicos/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , Mitose/genética , Ácidos Nucleicos Heteroduplexes/genética , Rad51 Recombinase/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(14): 5749-54, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307574

RESUMO

DNA lesions that block replication can be bypassed by error-prone or error-free mechanisms. Error-prone mechanisms rely on specialized translesion synthesis (TLS) DNA polymerases that directly replicate over the lesion, whereas error-free pathways use an undamaged duplex as a template for lesion bypass. In the yeast Saccharomyces cerevisiae, most mutagenic TLS of spontaneous and induced DNA damage relies on DNA polymerase zeta (Polzeta) activity. Here, we use a distinct mutational signature produced by Polzeta in a frameshift-reversion assay to examine the role of the yeast mismatch repair (MMR) system in regulating Polzeta-dependent mutagenesis. Whereas MMR normally reduces mutagenesis by removing errors introduced by replicative DNA polymerases, we find that the MMR system is required for Polzeta-dependent mutagenesis. In the absence of homologous recombination, however, the error-prone Polzeta pathway is not affected by MMR status. These results demonstrate that MMR promotes Polzeta-dependent mutagenesis by inhibiting an alternative, error-free pathway that depends on homologous recombination. Finally, in contrast to its ability to remove mistakes made by replicative DNA polymerases, we show that MMR fails to efficiently correct errors introduced by Polzeta.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , Mutagênese , Recombinação Genética , Leveduras/genética
8.
Front Plant Sci ; 13: 883209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498695

RESUMO

High-throughput, field-based characterization of root systems for hundreds of genotypes in thousands of plots is necessary for breeding and identifying loci underlying variation in root traits and their plasticity. We designed a large-scale sampling of root pulling force, the vertical force required to extract the root system from the soil, in a maize diversity panel under differing irrigation levels for two growing seasons. We then characterized the root system architecture of the extracted root crowns. We found consistent patterns of phenotypic plasticity for root pulling force for a subset of genotypes under differential irrigation, suggesting that root plasticity is predictable. Using genome-wide association analysis, we identified 54 SNPs as statistically significant for six independent root pulling force measurements across two irrigation levels and four developmental timepoints. For every significant GWAS SNP for any trait in any treatment and timepoint we conducted post hoc tests for genotype-by-environment interaction, using a mixed model ANOVA. We found that 8 of the 54 SNPs showed significant GxE. Candidate genes underlying variation in root pulling force included those involved in nutrient transport. Although they are often treated separately, variation in the ability of plant roots to sense and respond to variation in environmental resources including water and nutrients may be linked by the genes and pathways underlying this variation. While functional validation of the identified genes is needed, our results expand the current knowledge of root phenotypic plasticity at the whole plant and gene levels, and further elucidate the complex genetic architecture of maize root systems.

9.
Genetics ; 177(3): 1951-3, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947417

RESUMO

As part of the Saccharomyces Genome Deletion Project, sets of presumably isogenic haploid and diploid strains that differed only by single gene deletions were constructed. We found that one set of 96 strains (containing deletions of ORFs located between YOR097C and YOR192C) in the collection, which was derived from the haploid BY4741, has an additional mutation in the MSH3 mismatch repair gene.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Saccharomyces/genética , Reparo de Erro de Pareamento de DNA , Deleção de Genes , Genoma Fúngico , Haploidia , Repetições de Microssatélites , Proteína 3 Homóloga a MutS , Mutação , Fases de Leitura Aberta , Proteínas de Saccharomyces cerevisiae
10.
G3 (Bethesda) ; 5(12): 2801-8, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497143

RESUMO

Single-molecule real-time (SMRT) sequencing generates much longer reads than other widely used next-generation (next-gen) sequencing methods, but its application to whole genome/exome analysis has been limited. Here, we describe the use of SMRT sequencing coupled with barcoding to simultaneously analyze one or a small number of genomic targets derived from multiple sources. In the budding yeast system, SMRT sequencing was used to analyze strand-exchange intermediates generated during mitotic recombination and to analyze genetic changes in a forward mutation assay. The general barcoding-SMRT approach was then extended to diffuse large B-cell lymphoma primary tumors and cell lines, where detected changes agreed with prior Illumina exome sequencing. A distinct advantage afforded by SMRT sequencing over other next-gen methods is that it immediately provides the linkage relationships between SNPs in the target segment sequenced. The strength of our approach for mutation/recombination studies (as well as linkage identification) derives from its inherent computational simplicity coupled with a lack of reliance on sophisticated statistical analyses.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Alelos , Linhagem Celular Tumoral , Código de Barras de DNA Taxonômico/métodos , Análise Mutacional de DNA/métodos , Genes Fúngicos , Ligação Genética , Genômica/métodos , Humanos , Linfoma/genética , Mutação , Recombinação Genética , Reprodutibilidade dos Testes , Leveduras/classificação , Leveduras/genética
11.
Genetics ; 198(2): 519-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25060101

RESUMO

DNA damage that escapes repair and blocks replicative DNA polymerases is tolerated by bypass mechanisms that fall into two general categories: error-free template switching and error-prone translesion synthesis. Prior studies of DNA damage responses in Saccharomyces cerevisiae have demonstrated that repair mechanisms are critical for survival when a single, high dose of DNA damage is delivered, while bypass/tolerance mechanisms are more important for survival when the damage level is low and continuous (acute and chronic damage, respectively). In the current study, epistatic interactions between DNA-damage tolerance genes were examined and compared when haploid yeast cells were exposed to either chronic ultraviolet light or chronic methyl methanesulfonate. Results demonstrate that genes assigned to error-free and error-prone bypass pathways similarly promote survival in the presence of each type of chronic damage. In addition to using defined sources of chronic damage, rates of spontaneous mutations generated by the Pol ζ translesion synthesis DNA polymerase (complex insertions in a frameshift-reversion assay) were used to infer epistatic interactions between the same genes. Similar epistatic interactions were observed in analyses of spontaneous mutation rates, suggesting that chronic DNA-damage responses accurately reflect those used to tolerate spontaneous lesions. These results have important implications when considering what constitutes a safe and acceptable level of exogenous DNA damage.


Assuntos
Dano ao DNA , Saccharomyces cerevisiae/genética , Sequência de Bases , RNA Helicases DEAD-box/fisiologia , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Epistasia Genética , Genes Fúngicos , Dados de Sequência Molecular , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
12.
Genetics ; 190(2): 501-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095081

RESUMO

Small insertions or deletions that alter the reading frame of a gene typically occur in simple repeats such as mononucleotide runs and are thought to reflect spontaneous primer-template misalignment during DNA replication. The resulting extrahelical repeat is efficiently recognized by the mismatch repair machinery, which specifically replaces the newly replicated strand to restore the original sequence. Frameshift mutagenesis is most easily studied using reversion assays, and previous studies in Saccharomyces cerevisiae suggested that the length threshold for polymerase slippage in mononucleotide runs is 4N. Because the probability of slippage is strongly correlated with run length, however, it was not clear whether shorter runs were unable to support slippage or whether the resulting frameshifts were obscured by the presence of longer runs. To address this issue, we removed all mononucleotide runs >3N from the yeast lys2ΔBgl and lys2ΔA746 frameshift reversion assays, which detect net 1-bp deletions and insertions, respectively. Analyses demonstrate that 2N and 3N runs can support primer-template misalignment, but there is striking run-specific variation in the frequency of slippage, in the accumulation of +1 vs. -1 frameshifts and in the apparent efficiency of mismatch repair. We suggest that some of this variation reflects the role of flanking sequence in initiating primer-template misalignment and that some reflects replication-independent frameshifts generated by the nonhomologous end-joining pathway. Finally, we demonstrate that nonhomologous end joining is uniquely required for the de novo creation of tandem duplications from noniterated sequence.


Assuntos
Mutação da Fase de Leitura , Mutagênese , Saccharomyces cerevisiae/genética , Alelos , Pareamento Incorreto de Bases , Sequência de Bases , Reparo do DNA por Junção de Extremidades , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Duplicação Gênica , Dados de Sequência Molecular , Recombinação Genética
13.
Plant Physiol ; 142(3): 1256-66, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16980558

RESUMO

During the transition from darkness to light, a suite of light sensors guides gene expression, biochemistry, and morphology to optimize acclimation to the new environment. Ultraviolet, blue, red, and far-red light all have demonstrated roles in modulating light responses, such as changes in gene expression and suppression of stem growth rate. However, green wavebands induce stem growth elongation, a response not likely mediated by known photosensors. In this study, etiolated Arabidopsis (Arabidopsis thaliana) seedlings were treated with a short, dim, single pulse of green light comparable in fluence and duration to that previously shown to excite robust stem elongation. Genome microarrays were then used to monitor coincident changes in gene expression. As anticipated, phytochrome A-regulated, nuclear-encoded transcripts were induced, confirming proper function of the sensitive phytochrome system. In addition, a suite of plastid-encoded transcripts decreased in abundance, including several typically up-regulated after phytochrome and/or cryptochrome activation. Further analyses using RNA gel-blot experiments demonstrated that the response is specific to green light, fluence dependent, and detectable within 30 min. The response obeys reciprocity and persists in the absence of known photosensors. Plastid transcript down-regulation was also observed in tobacco (Nicotiana tabacum) with similar temporal and fluence-response kinetics. Together, the down-regulation of plastid transcripts and increase in stem growth rate represent a mechanism that tempers progression of early commitment to the light environment, helping tailor seedling development during the critical process of establishment.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Plastídeos/genética , Plastídeos/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Arabidopsis/genética , Cor , Nicotiana , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA