Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394889

RESUMO

Gilles de la Tourette syndrome (GTS) and dystonia (DYS) are both hyperkinetic movement disorders effectively treated by deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi). In this study, we compared single-neuron activity in the GPi between 18 GTS patients (with an average of 41 cells per patient) and 17 DYS patients (with an average of 54 cells per patient), all of whom underwent bilateral pallidal stimulation surgery, under general anesthesia or while awake at rest. We found no significant differences in GPi neuronal activity characteristics between patients operated on under general anesthesia versus those who were awake, irrespective of their diagnosis (GTS or DYS). We found higher firing rates, firing rate in bursts, pause duration and interspike interval coefficient of variation in GTS patients compared to DYS patients. On the opposite, we found higher number of pauses and bursts frequency in DYS patients. Lastly, we found a higher proportion of GPi oscillatory activities in DYS compared to GTS patients, with predominant activity within the low-frequency band (theta/alpha) in both patient groups. These findings underscore the complex relationship between the different neuronal discharge characteristic such as oscillatory or bursting activity within the GPi in shaping the clinical phenotypes of hyperkinetic disorders. Further research is warranted to deepen our understanding of how neuronal patterns are transmitted within deep brain structures and to develop strategies aimed at normalizing these pathological activities, by refining DBS techniques to enhance treatment efficacy and individual outcomes.

2.
Hum Brain Mapp ; 45(1): e26547, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38060194

RESUMO

Problem-solving often requires creativity and is critical in everyday life. However, the neurocognitive mechanisms underlying creative problem-solving remain poorly understood. Two mechanisms have been highlighted: the formation of new connections among problem elements and insight solving, characterized by sudden realization of a solution. In this study, we investigated EEG activity during a modified version of the remote associates test, a classical insight problem task that requires finding a word connecting three unrelated words. This allowed us to explore the brain correlates associated with the semantic remoteness of connections (by varying the remoteness of the solution word across trials) and with insight solving (identified as a Eurêka moment reported by the participants). Semantic remoteness was associated with power increase in the alpha band (8-12 Hz) in a left parieto-temporal cluster, the beta band (13-30 Hz) in a right fronto-temporal cluster in the early phase of the task, and the theta band (3-7 Hz) in a bilateral frontal cluster just prior to participants' responses. Insight solving was associated with power increase preceding participants' responses in the alpha and gamma (31-60 Hz) bands in a left temporal cluster and the theta band in a frontal cluster. Source reconstructions revealed the brain regions associated with these clusters. Overall, our findings shed new light on some of the mechanisms involved in creative problem-solving.


Assuntos
Encéfalo , Resolução de Problemas , Humanos , Resolução de Problemas/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Criatividade , Mapeamento Encefálico , Eletroencefalografia
3.
Epilepsia ; 64(2): e23-e29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481871

RESUMO

Forecasting seizure risk aims to detect proictal states in which seizures would be more likely to occur. Classical seizure prediction models are trained over long-term electroencephalographic (EEG) recordings to detect specific preictal changes for each seizure, independently of those induced by shifts in states of vigilance. A daily single measure-during a vigilance-controlled period-to estimate the risk of upcoming seizure(s) would be more convenient. Here, we evaluated whether intracranial EEG connectivity (phase-locking value), estimated from daily vigilance-controlled resting-state recordings, could allow distinguishing interictal (no seizure) from preictal (seizure within the next 24 h) states. We also assessed its relevance for daily forecasts of seizure risk using machine learning models. Connectivity in the theta band was found to provide the best prediction performances (area under the curve ≥ .7 in 80% of patients), with accurate daily and prospective probabilistic forecasts (mean Brier score and Brier skill score of .13 and .72, respectively). More efficient ambulatory clinical application could be considered using mobile EEG or chronic implanted devices.


Assuntos
Eletrocorticografia , Convulsões , Humanos , Estudos Prospectivos , Convulsões/diagnóstico , Eletroencefalografia , Previsões
4.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34210784

RESUMO

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Assuntos
Inibidor da Ligação a Diazepam/uso terapêutico , Agonistas de Receptores de GABA-A/uso terapêutico , Neurônios/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Receptores de GABA-A/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Adulto , Animais , Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Inibidor da Ligação a Diazepam/deficiência , Inibidor da Ligação a Diazepam/fisiologia , Implantes de Medicamento , Potenciais Somatossensoriais Evocados , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Hidrogéis , Infarto da Artéria Cerebral Média/tratamento farmacológico , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/etiologia , Luz , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/fisiologia , Ratos , Rosa Bengala/efeitos da radiação , Rosa Bengala/toxicidade , Método Simples-Cego , Acidente Vascular Cerebral/etiologia
5.
Neuroimage ; 254: 119116, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318150

RESUMO

PURPOSE: Human neuronal activity, recorded in vivo from microelectrodes, may offer valuable insights into physiological mechanisms underlying human cognition and pathophysiological mechanisms of brain diseases, in particular epilepsy. Continuous and long-term recordings are necessary to monitor non predictable pathological and physiological activities like seizures or sleep. Because of their high impedance, microelectrodes are more sensitive to noise than macroelectrodes. Low noise levels are crucial to detect action potentials from background noise, and to further isolate single neuron activities. Therefore, long-term recordings of multi-unit activity remains a challenge. We shared here our experience with microelectrode recordings and our efforts to reduce noise levels in order to improve signal quality. We also provided detailed technical guidelines for the connection, recording, imaging and signal analysis of microelectrode recordings. RESULTS: During the last 10 years, we implanted 122 bundles of Behnke-Fried hybrid macro-microelectrodes, in 56 patients with pharmacoresistant focal epilepsy. Microbundles were implanted in the temporal lobe (74%), as well as frontal (15%), parietal (6%) and occipital (5%) lobes. Low noise levels depended on our technical setup. The noise reduction was mainly obtained after electrical insulation of the patient's recording room and the use of a reinforced microelectrode model, reaching median root mean square values of 5.8 µV. Seventy percent of the bundles could record multi-units activities (MUA), on around 3 out of 8 wires per bundle and for an average of 12 days. Seizures were recorded by microelectrodes in 91% of patients, when recorded continuously, and MUA were recorded during seizures for 75 % of the patients after the insulation of the room. Technical guidelines are proposed for (i) electrode tails manipulation and protection during surgical bandage and connection to both clinical and research amplifiers, (ii) electrical insulation of the patient's recording room and shielding, (iii) data acquisition and storage, and (iv) single-units activities analysis. CONCLUSIONS: We progressively improved our recording setup and are now able to record (i) microelectrode signals with low noise level up to 3 weeks duration, and (ii) MUA from an increased number of wires . We built a step by step procedure from electrode trajectory planning to recordings. All these delicate steps are essential for continuous long-term recording of units in order to advance in our understanding of both the pathophysiology of ictogenesis and the neuronal coding of cognitive and physiological functions.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Potenciais de Ação , Eletrodos Implantados , Humanos , Microeletrodos , Neurônios/fisiologia , Convulsões
6.
Neuroimage ; 257: 119056, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283287

RESUMO

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Assuntos
Eletroencefalografia , Humanos
7.
J Neurosci ; 39(19): 3676-3686, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30842247

RESUMO

Stimulation and functional imaging studies have revealed the existence of a large network of cortical regions involved in the regulation of heart rate. However, very little is known about the link between cortical neural firing and cardiac-cycle duration (CCD). Here, we analyze single-unit and multiunit data obtained in humans at rest, and show that firing rate covaries with CCD in 16.7% of the sample (25 of 150). The link between firing rate and CCD was most prevalent in the anterior medial temporal lobe (entorhinal and perirhinal cortices, anterior hippocampus, and amygdala), where 36% (18 of 50) of the units show the effect, and to a lesser extent in the mid-to-anterior cingulate cortex (11.1%, 5 of 45). The variance in firing rate explained by CCD ranged from 0.5 to 11%. Several lines of analysis indicate that neural firing influences CCD, rather than the other way around, and that neural firing affects CCD through vagally mediated mechanisms in most cases. These results show that part of the spontaneous fluctuations in firing rate can be attributed to the cortical control of the cardiac cycle. The fine tuning of the regulation of CCD represents a novel physiological factor accounting for spontaneous variance in firing rate. It remains to be determined whether the "noise" introduced in firing rate by the regulation of CCD is detrimental or beneficial to the cognitive information processing carried out in the parahippocampal and cingulate regions.SIGNIFICANCE STATEMENT Fluctuations in heart rate are known to be under the control of cortical structures, but spontaneous fluctuations in cortical firing rate, or "noise," have seldom been related to heart rate. Here, we analyze unit activity in humans at rest and show that spontaneous fluctuations in neural firing in the medial temporal lobe, as well as in the mid-to-anterior cingulate cortex, influence heart rate. This phenomenon was particularly pronounced in the entorhinal and perirhinal cortices, where it could be observed in one of three neurons. Our results show that part of spontaneous firing rate variability in regions best known for their cognitive role in spatial navigation and memory corresponds to precise physiological regulations.


Assuntos
Potenciais de Ação/fisiologia , Giro do Cíngulo/fisiologia , Frequência Cardíaca/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal/fisiologia , Descanso/fisiologia , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocardiografia/métodos , Feminino , Giro do Cíngulo/citologia , Humanos , Masculino , Giro Para-Hipocampal/citologia
8.
J Cogn Neurosci ; 31(6): 855-873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883293

RESUMO

Prediction is held to be a fundamental process underpinning perception, action, and cognition. To examine the time course of prediction error signaling, we recorded intracranial EEG activity from nine presurgical epileptic patients while they listened to melodies whose information theoretical predictability had been characterized using a computational model. We examined oscillatory activity in the superior temporal gyrus (STG), the middle temporal gyrus (MTG), and the pars orbitalis of the inferior frontal gyrus, lateral cortical areas previously implicated in auditory predictive processing. We also examined activity in anterior cingulate gyrus (ACG), insula, and amygdala to determine whether signatures of prediction error signaling may also be observable in these subcortical areas. Our results demonstrate that the information content (a measure of unexpectedness) of musical notes modulates the amplitude of low-frequency oscillatory activity (theta to beta power) in bilateral STG and right MTG from within 100 and 200 msec of note onset, respectively. Our results also show this cortical activity to be accompanied by low-frequency oscillatory modulation in ACG and insula-areas previously associated with mediating physiological arousal. Finally, we showed that modulation of low-frequency activity is followed by that of high-frequency (gamma) power from approximately 200 msec in the STG, between 300 and 400 msec in the left insula, and between 400 and 500 msec in the ACG. We discuss these results with respect to models of neural processing that emphasize gamma activity as an index of prediction error signaling and highlight the usefulness of musical stimuli in revealing the wide-reaching neural consequences of predictive processing.


Assuntos
Antecipação Psicológica/fisiologia , Percepção Auditiva/fisiologia , Ondas Encefálicas/fisiologia , Eletrocorticografia , Música , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Adulto , Tonsila do Cerebelo/fisiologia , Epilepsia/fisiopatologia , Feminino , Giro do Cíngulo/fisiologia , Humanos , Masculino , Modelos Teóricos
9.
Ann Neurol ; 82(6): 1022-1028, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29205475

RESUMO

Focal seizures are assumed to arise from a hypersynchronous activity affecting a circumscribed brain region. Using microelectrodes in seizure-generating deep mesial regions of 9 patients, we investigated the firing of hundreds of single neurons before, during, and after ictal electroencephalogram (EEG) discharges. Neuronal spiking activity at seizure initiation was highly heterogeneous and not hypersynchronous. Furthermore, groups of neurons showed significant changes in activity minutes before the seizure with no concomitant changes in the corresponding macroscopic EEG recordings. Altogether, our findings suggest that only limited subsets of neurons in epileptic depth regions initiate the seizure-onset and that ictogenic mechanisms operate in submillimeter-scale microdomains. Ann Neurol 2017 Ann Neurol 2017;82:1022-1028.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/tendências , Convulsões/fisiopatologia , Lobo Temporal/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico , Eletrodos Implantados , Humanos , Convulsões/diagnóstico
10.
Brain ; 139(Pt 12): 3084-3091, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27797807

RESUMO

Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications.


Assuntos
Eletrocorticografia/métodos , Retroalimentação Sensorial/fisiologia , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Neurorretroalimentação/métodos , Lobo Temporal/fisiologia , Adulto , Eletrodos Implantados , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Humanos
11.
Brain ; 137(Pt 11): 2984-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25234641

RESUMO

Leucin-rich, glioma inactivated 1 (LGI1) is a secreted protein linked to human seizures of both genetic and autoimmune aetiology. Mutations in the LGI1 gene are responsible for autosomal dominant temporal lobe epilepsy with auditory features, whereas LGI1 autoantibodies are involved in limbic encephalitis, an acquired epileptic disorder associated with cognitive impairment. We and others previously reported that Lgi1-deficient mice have early-onset spontaneous seizures leading to premature death at 2-3 weeks of age. Yet, where and when Lgi1 deficiency causes epilepsy remains unknown. To address these questions, we generated Lgi1 conditional knockout (cKO) mice using a set of universal Cre-driver mouse lines. Selective deletion of Lgi1 was achieved in glutamatergic pyramidal neurons during embryonic (Emx1-Lgi1cKO) or late postnatal (CaMKIIα-Lgi1cKO) developmental stages, or in gamma amino butyric acidergic (GABAergic) parvalbumin interneurons (PV-Lgi1cKO). Emx1-Lgi1cKO mice displayed early-onset and lethal seizures, whereas CaMKIIα-Lgi1cKO mice presented late-onset occasional seizures associated with variable reduced lifespan. In contrast, neither spontaneous seizures nor increased seizure susceptibility to convulsant were observed when Lgi1 was deleted in parvalbumin interneurons. Together, these data showed that LGI1 depletion restricted to pyramidal cells is sufficient to generate seizures, whereas seizure thresholds were unchanged after depletion in gamma amino butyric acidergic parvalbumin interneurons. We suggest that LGI1 secreted from excitatory neurons, but not parvalbumin inhibitory neurons, makes a major contribution to the pathogenesis of LGI1-related epilepsies. Our data further indicate that LGI1 is required from embryogenesis to adulthood to achieve proper circuit functioning.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas/fisiologia , Convulsões/etiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/fisiopatologia , Eletroencefalografia , Embrião de Mamíferos/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas/genética , Células Piramidais/metabolismo , Convulsões/genética
12.
Nat Commun ; 15(1): 2586, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531880

RESUMO

Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.


Assuntos
Atenção , Visão Ocular , Humanos , Atenção/fisiologia , Encéfalo , Mapeamento Encefálico , Estimulação Luminosa , Percepção Visual/fisiologia
13.
J Neurosci ; 32(41): 14305-10, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055501

RESUMO

Neural oscillations in the alpha band (8-12 Hz) are increasingly viewed as an active inhibitory mechanism that gates and controls sensory information processing as a function of cognitive relevance. Extending this view, phase synchronization of alpha oscillations across distant cortical regions could regulate integration of information. Here, we investigated whether such long-range cross-region coupling in the alpha band is intrinsically and selectively linked to activity in a distinct functionally specialized brain network. If so, this would provide new insight into the functional role of alpha band phase synchrony. We adapted the phase-locking value to assess fluctuations in synchrony that occur over time in ongoing activity. Concurrent EEG and functional magnetic resonance imaging (fMRI) were recorded during resting wakefulness in 26 human subjects. Fluctuations in global synchrony in the upper alpha band correlated positively with activity in several prefrontal and parietal regions (as measured by fMRI). fMRI intrinsic connectivity analysis confirmed that these regions correspond to the well known fronto-parietal (FP) network. Spectral correlations with this network's activity confirmed that no other frequency band showed equivalent results. This selective association supports an intrinsic relation between large-scale alpha phase synchrony and cognitive functions associated with the FP network. This network has been suggested to implement phasic aspects of top-down modulation such as initiation and change in moment-to-moment control. Mechanistically, long-range upper alpha band synchrony is well suited to support these functions. Complementing our previous findings that related alpha oscillation power to neural structures serving tonic control, the current findings link alpha phase synchrony to neural structures underpinning phasic control of alertness and task requirements.


Assuntos
Adaptação Fisiológica/fisiologia , Ritmo alfa/fisiologia , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 107(43): 18688-93, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20956297

RESUMO

The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.


Assuntos
Encéfalo/fisiologia , Dominância Cerebral/fisiologia , Idioma , Fala/fisiologia , Adulto , Córtex Auditivo/fisiologia , Encéfalo/anatomia & histologia , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Adulto Jovem
15.
Neuropsychologia ; 185: 108558, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37061128

RESUMO

Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.


Assuntos
Mapeamento Encefálico , Filmes Cinematográficos , Humanos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Imageamento por Ressonância Magnética/métodos
16.
Commun Biol ; 6(1): 730, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454150

RESUMO

How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.


Assuntos
Mapeamento Encefálico , Estado de Consciência , Humanos , Atenção , Encéfalo , Lobo Frontal
17.
Curr Biol ; 33(9): 1836-1843.e6, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37060906

RESUMO

Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.


Assuntos
Memória Episódica , Animais , Humanos , Rememoração Mental , Ritmo Teta , Hipocampo , Memória de Longo Prazo
18.
Cortex ; 157: 211-230, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335821

RESUMO

Brain sensory processing is not passive, but is rather modulated by our internal state. Different research methods such as non-invasive imaging methods and intracranial recording of the local field potential (LFP) have been used to study to what extent sensory processing and the auditory cortex in particular are modulated by selective attention. However, at the level of the single- or multi-units the selective attention in humans has not been tested. In addition, most previous research on selective attention has explored externally-oriented attention, but attention can be also directed inward (i.e., internal attention), like spontaneous self-generated thoughts and mind-wandering. In the present study we had a rare opportunity to record multi-unit activity (MUA) in the auditory cortex of a patient. To complement, we also analyzed the LFP signal of the macro-contact in the auditory cortex. Our experiment consisted of two conditions with periodic beeping sounds. The participants were asked either to count the beeps (i.e., an "external attention" condition) or to recall the events of the previous day (i.e., an "internal attention" condition). We found that the four out of seven recorded units in the auditory cortex showed increased firing rates in "external attention" compared to "internal attention" condition. The beginning of this attentional modulation varied across multi-units between 30-50 msec and 130-150 msec from stimulus onset, a result that is compatible with an early selection view. The LFP evoked potential and induced high gamma activity both showed attentional modulation starting at about 70-80 msec. As the control, for the same experiment we recorded MUA activity in the amygdala and hippocampus of two additional patients. No major attentional modulation was found in the control regions. Overall, we believe that our results provide new empirical information and support for existing theoretical views on selective attention and spontaneous self-generated cognition.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/fisiologia , Atenção/fisiologia , Potenciais Evocados , Mapeamento Encefálico/métodos , Encéfalo , Percepção Auditiva/fisiologia , Estimulação Acústica , Potenciais Evocados Auditivos
19.
Front Neurol ; 13: 1022768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438938

RESUMO

Periventricular nodular heterotopia (PNH) is a malformation of cortical development that frequently causes drug-resistant epilepsy. The epileptogenicity of ectopic neurons in PNH as well as their role in generating interictal and ictal activity is still a matter of debate. We report the first in vivo microelectrode recording of heterotopic neurons in humans. Highly consistent interictal patterns (IPs) were identified within the nodules: (1) Periodic Discharges PLUS Fast activity (PD+F), (2) Sporadic discharges PLUS Fast activity (SD+F), and (3) epileptic spikes (ES). Neuronal firing rates were significantly modulated during all IPs, suggesting that multiple IPs were generated by the same local neuronal populations. Furthermore, firing rates closely followed IP morphologies. Among the different IPs, the SD+F pattern was found only in the three nodules that were actively involved in seizure generation but was never observed in the nodule that did not take part in ictal discharges. On the contrary, PD+F and ES were identified in all nodules. Units that were modulated during the IPs were also found to participate in seizures, increasing their firing rate at seizure onset and maintaining an elevated rate during the seizures. Together, nodules in PNH are highly epileptogenic and show several IPs that provide promising pathognomonic signatures of PNH. Furthermore, our results show that PNH nodules may well initiate seizures.

20.
Prog Neurobiol ; 213: 102262, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35283238

RESUMO

Autoimmune encephalitis associated with antibodies directed against the leucine-rich glioma inactivated 1 (LGI1) protein is responsible for specific tonic-dystonic motor seizures. Although dysfunctions in neuronal excitability have been associated with anti-LGI1 autoantibodies, their relation to seizures remain inconclusive. We developed a new in vivo experimental rat model to determine whether inhibition of Kv1.1 channels by dentrotoxin-K (DTX) in the primary motor cortex (M1) could recapitulate the human seizures and to elucidate their subtending cortical mechanisms. Comparing electro-clinical features of DTX-induced seizures in rats with those recorded from a cohort of anti-LGI1 encephalitis patients revealed striking similarities in their electroencephalographic (EEG) signature, frequency of recurrence and semiology. By combining multi-site extracellular and intracellular recordings of M1 pyramidal neurons in DTX rats, we demonstrated that the blockade of Kv1.1 channels induced a sequence of changes in neuronal excitability and synaptic activity, leading to massive suprathreshold membrane depolarizations underlying the paroxysmal EEG activity. Our results suggest the central role of Kv1.1 channels disruption in the emergence of anti-LGI1-associated seizures and suggest that this new rodent model could serve future investigations on ictogenesis in autoimmune encephalitis.


Assuntos
Encefalite , Glioma , Córtex Motor , Animais , Doença de Hashimoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucina , Ratos , Convulsões/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA