Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Small ; 20(16): e2306323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039497

RESUMO

Room temperature phosphorescent (RTP) materials with long-lived, excitation-dependent, and time-dependent phosphorescence are highly desirable but very hard to achieve. Herein, this work reports a rational strategy of multiple wavelength excitation and time-dependent dynamic RTP color by confining silane-functionalized carbon dots (CDs) in a silica matrix (Si-CDs@SiO2). The Si-CDs@SiO2 possesses unique green-light-excitation and a change in phosphorescence color from yellow to green. A slow-decaying phosphorescence at 500 nm with a lifetime of 1.28 s and a fast-decaying phosphorescence at 580 nm with a lifetime of 0.90 s are observed under 365 nm of irradiation, which originated from multiple surface triplet states of the Si-CDs@SiO2. Given the unique dynamic RTP properties, the Si-CDs@SiO2 are demonstrated for applications in fingerprint recognition and multidimensional dynamic information encryption. These findings will open an avenue to explore dynamic phosphorescent materials and significantly broaden their applications.

2.
Chem Rev ; 122(15): 12495-12543, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759536

RESUMO

Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
3.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38052724

RESUMO

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

4.
Small ; 19(31): e2206222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36907994

RESUMO

Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.


Assuntos
Chlorella , Pontos Quânticos , Transporte de Elétrons , Elétrons , Carbono/farmacologia , Nitrogênio , Compostos Férricos/farmacologia , Fotossíntese
5.
Ecotoxicol Environ Saf ; 259: 115023, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201425

RESUMO

In highly intensive greenhouse vegetable production, soil acidification was caused by excessive fertilization, increasing cadmium (Cd) concentrations in the vegetables, which bears environmental hazards and is a negative influence on vegetables and humans. Transglutaminases (TGases), a central mediator for certain physiological effects of polyamines (PAs) in the plant kingdom, play important roles in plant development and stress response. Despite increased research on the crucial role of TGase in protecting against environmental stresses, relatively little is known about the mechanisms of Cd tolerance. In this study, we found, TGase activity and transcript level, which was upregulated by Cd, and TGase-induced Cd tolerance related to endogenous bound PAs increase and formation of nitric oxide (NO). Plant growth of tgase mutants was hypersensitive to Cd, chemical complementation by putrescine, sodium nitroprusside (SNP, nitric oxide donor) or gain of function TGase experiments restore Cd tolerance. α-diflouromethylornithine (DFMO, a selective ODC inhibitor) and 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger), were respectively found declined drastically endogenous bound PA and NO content in TGase overexpression plants. Likewise, we reported that TGase interacted with polyamine uptake protein 3 (Put3), and the silencing of Put3 largely reduced TGase-induced Cd tolerance and bound PAs formation. This salvage strategy depends on TGase-regulated synthesis of bound PAs and NO that is able to positively increase the concentration of thiol and phytochelatins, elevate Cd in the cell wall, as well as induce the levels of expression Cd uptake and transport genes. Collectively, these findings indicate that TGase-mediated enhanced levels of bound PA and NO acts as a vital mechanism to protect the plant from Cd-caused toxicity.


Assuntos
Óxido Nítrico , Solanum lycopersicum , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Óxido Nítrico/metabolismo , Fitoquelatinas , Plantas/metabolismo , Poliaminas/farmacologia , Solanum lycopersicum/genética
6.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
7.
Ecotoxicol Environ Saf ; 246: 114177, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244176

RESUMO

Oxidative stress in plants caused by UV-B stress has always been a great challenge to the yield of agricultural products. Carbon dots (CDs) with enzyme-like activity have been developed, and inhibiting oxidative stress in animals has been achieved, but little is known about abiotic stress resistance in plants, especially UV-B stress. In this study, CDs were synthesized from Scutellaria baicalensis via a hydrothermal method. The ability of CDs to scavenge reactive oxygen species (ROS) in vivo and in vitro and to enhance antioxidant resistance in vivo was evaluated. The results show that CDs promoted the nutrient assimilation ability of lettuce seedlings and protected the plants from UV-B stress by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX). Moreover, the antioxidant metabolism of plants can be activated by CDs and the expression levels of aquaporin (AQP) genes PIP1 and PIP2 are also up-regulated. These results facilitate the design and fabrication of CDs to meet the challenge of abiotic stress in food production.


Assuntos
Antioxidantes , Lactuca , Lactuca/metabolismo , Antioxidantes/metabolismo , Scutellaria baicalensis/metabolismo , Carbono/metabolismo , Catalase/metabolismo , Ascorbato Peroxidases/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Angew Chem Int Ed Engl ; 60(41): 22253-22259, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390105

RESUMO

Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.

9.
Small ; 16(49): e2005228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185338

RESUMO

Carbon nanodots (CDs) anchored onto inorganic supporter (amorphous nanosilica, SiO2 ) like a core-satellite structure have enhanced the room-temperature phosphorescence (RTP) intensity along with ultralong lifetime of 1.76 s. Special and quite stable structure should account for these superiorities, including hydrogen network, covalent bond, and trap-stabilized triplet-state excitons that are responsible for the generation of phosphorescence. These multiple effects have efficaciously protected CDs from being restrained by the external environment, providing such long-lived emission (LLE) that can subsist not only in powdery CDs-SiO2 but also coexist in aqueous solution, pushing a big step forward in the application prospects of liquid-state phosphorescence. Through construction of CDs-SiO2 compound, electron trap is reasoned between CDs and SiO2 by analyzing thermoluminescent glow curve. Electron trap can capture, store, and gradually release the electrons just like an electron transporter to improve the intersystem crossing (ISC) and reserved ISC, having provided the more stabilized triplet excitons, stronger and longer phosphorescence, and also triggered the formation of thermally activated delayed fluorescence (TADF), offering a new mechanism for exploiting LLE among CD-based field. Moreover, it is more beneficial to the formation of TADF as temperature increases, thus the afterglow color can change with the temperature.

10.
Small ; 16(1): e1905266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782905

RESUMO

Commercial white light-emitting diodes (LEDs) have the undesirable characteristics of blue-rich emission and low color rendering index (CRI), while the constituent quantum dots (QDs) suffer from aggregation-induced fluorescence quenching and poor stability. Herein, a strategy is developed to assemble tricolor QDs into a polysiloxane matrix using a polymer-mediated hybrid approach whereby the hybrid composite exhibits a significant enhancement of aggregation-dispersed emission, outstanding photostability, high thermal stability, and outstanding fluorescence recovery. Using the as-prepared hybrid fluorescent materials, the fabricated LEDs exhibit solar spectrum-simulated emission with adjustable Commission Internationale de L'Eclairage coordinates, correlated color temperature, and a recorded CRI of 97. Furthermore, they present no ultraviolet emission and weak blue emission, thus indicating an ideal healthy and high-CRI white LED lighting source.

11.
Opt Express ; 28(13): 19550-19561, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672229

RESUMO

C-dot-based composites with phosphorescence have been widely reported due to their attractive potential in various applications. But easy quenching of phosphorescence induced by oxygen or instability of matrices remained a tricky problem. Herein, we reported a Si-doped-CD (Si-CD)-based RTP materials with long lifetime by embedding Si-CDs in sulfate crystalline matrices. The resultant Si-CD@sulfate composites exhibited a long lifetime up to 1.07 s, and outstanding stability under various ambient conditions. The intriguing RTP phenomenon was attributed to the C = O bond and the doping of Si element due to the fact that sulfates could effectively stabilize the triplet states of Si-CDs, thus enabling the intersystem crossing (ISC). Meanwhile, we confirmed that the ISC process and phosphorescence emission could be effectively regulated based on the heavy atom effect. This research introduced a new perspective to develop materials with regulated RTP performance and high stability.

12.
Mikrochim Acta ; 187(6): 347, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458214

RESUMO

An "off-on" assay system for H2O2 determination was developed based on assembling ultra-bright fluorescent silicon quantum dots (SiQDs) and PEG-MnO2 nanosheets. Among them, SiQDs acted as fluorometric reporter, which can effectively eliminate the interference of plant pigments under excitation of 365 nm. PEG-MnO2 nanosheets played dual function of nanoquencher and H2O2 recognizer. Unlike previous reports, the quenching mechanism of SiQDs by PEG-MnO2 nanosheets is attributed to both the associative effect of inner filter effect and the static quenching effect. Thus, the fluorescence intensity of SiQDs at 445 nm decreased with increasing concentration of PEG-MnO2 nanosheets. After addition of H2O2, PEG-MnO2 nanosheets were reduced to Mn2+, consequently resulting in the recovery of the SiQDs fluorescence. Combined with these properties, an off-on fluorescent method was built for determination of H2O2 in plant leaves with high sensitivity and selectivity. The present method has two linear ranges: from 0.05 to 1 µM with a detection limit of 0.09 µM and from 1 to 80 µM with a detection limit of 4.04 µM. Graphical abstract Schematic representation of the mechanism of SiQD/PEG-MnO2 nanoprobe for determination of H2O2.


Assuntos
Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Compostos de Manganês/química , Óxidos/química , Polietilenoglicóis/química , Pontos Quânticos/química , Fluorescência , Lactuca/química , Limite de Detecção , Folhas de Planta/química , Silício/química , Espectrometria de Fluorescência/métodos
13.
Opt Express ; 27(5): 7629-7641, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876325

RESUMO

The research and development of non-toxic, broad-spectrum and environmentally friendly ultraviolet absorbers remains no significant progress in recent years. We found that the ultraviolet absorption spectra can be regulated through modification of functional groups on carbon dots surface, and the modified carbon dots exhibiting good stability and functions of sunscreen (Sun protection actor reaches to 22) and anti-aging properties were experimentally demonstrated. Moreover, we figured out the ultraviolet absorption mechanism of carbon dots for the first time and confirmed the existence of non-fluorescent radiation energy traps. Carbon dots are expected to be widely used and commercialized as ultraviolet absorbers.

14.
Nanotechnology ; 30(15): 155601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30625454

RESUMO

The shell/core structure of CDs@CaF2 nanocomposites (CCNCs) were prepared by assembling fluorescent carbon dots (CDs) inside the inorganic CaF2 substrates using co-precipitation interaction. CDs endow CaF2 with properties of good UV-absorbing behavior and efficient blue light emission instead of rare-earth such as Eu that is expensive and susceptible to polluting the environment during the mining process. Due to the nanometer size and surface effect of nano CaF2, and the approximate refractive index between CaF2 and polyethylene (PE), CCNC/PE film exhibits better elongation at the break than pure PE film while maintaining high transparency and visible light transmittance. Simultaneously, the CCNC/PE film was experimentally demonstrated to have outstanding performance of anti-UV and blue light conversion, which shows that CCNCs can be a novel and promising multifunctional additive applied in polymers especially for greenhouse film.

15.
Angew Chem Int Ed Engl ; 58(22): 7278-7283, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30924580

RESUMO

Carbon dots (CDs) have attracted attention in metal-free afterglow materials, but most CDs were heteroatom-containing and the afterglow emissions are still limited to the short-wavelength region. A universal approach to activate the room-temperature phosphorescence (RTP) of both heteroatom-free and heteroatom-containing CDs was developed by one-step heat treatment of CDs and boric acid (BA). The introduction of an electron-withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long-lifetime and multi-color (blue, green, green-yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD-based RTP materials in information encryption and decryption are also proposed and demonstrated.

16.
J Nanosci Nanotechnol ; 18(1): 374-380, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768856

RESUMO

We synthesized a emission tunable Eu(II)-activated SrAl2Si2O8 phosphors Eu(II)-activated SrAl2Si2O8 phosphors. The emission color could be controlled from blue to greenish-blue emissions via changing Sr/Eu ratio. The SrAl2Si2O8 and EuAl2Si2O8 phases were found to form a complete solid solution with composition of (Sr1-xEux)Al2Si2O8 (0 ≤ x ≤ 1.0), as indicated by X-ray diffraction analysis. Our research results also reveal that the use of fluxing agents of H3BO3 or LiBO2 in the materials synthesis plays a crucial role in improving the photoluminescence (PL) properties of (Sr,Eu)Al2Si2O8 phosphor and the surface morphology. The SrAl2Si2O8:Eu phosphors with varied Eu2+ contents show typical broad band emission in the range of 409 to 492 nm under ultraviolet excitation ranging from 352 to 380 nm. As indicated by the PL spectra of (Sr1-xEux)Al2Si2O8, the emission wavelength was found to red-shift, whereas the PL intensity was found to decrease with increasing doped Eu2+ content. Wide-range Commission Internationale de I'Eclairage (CIE) chromaticity coordinates from (0.15, 0.06) (when x = 0) to (0.23, 0.30) (when x = 1.0) can be achieved by properly adjusting the doped Eu2+ content in (Sr1-xEux)Al2Si2O8 phases. The optimization of preparation, correlation between crystal structure and luminescence properties, and microstructure of Eu2+-activated SrAl2Si2O8 are presented.

17.
Small ; 13(26)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28513980

RESUMO

Stable solid-state red fluorescence from organosilane-functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the efficient construction of dual-fluorescence morphologies. The quantum yield of these solid-state CDs and their aqueous solution is 9.60 and 50.7%, respectively. The fluorescence lifetime is 4.82 ns for solid-state CDs, and 15.57 ns for their aqueous solution. These CDs are detailedly studied how they can exhibit obvious photoluminescence overcoming the self-quenching in solid state. Luminescent materials are constructed with dual fluorescence based on as-prepared single emissive CDs (red emission) and nonfluorescence media (starch, Al2 O3 , and RnOCH3 COONa), with the characteristic peaks located at nearly 440 and 600 nm. Tunable photoluminescence can be successfully achieved by tuning the mass ratio of CDs to solid matrix (such as starch). These constructed dual-fluorescence CDs/starch composites can also be applied in white light-emitting diodes with UV chips (395 nm), and oxygen sensing.

18.
Inorg Chem ; 54(12): 6028-34, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26020692

RESUMO

The resistance of a luminescent material to thermal quenching is essential for the application in high power LEDs. Usually, thermal luminescence quenching becomes more and more serious as the activator concentration increases. Conversely, we found here that a red phosphor Sr2P2O7:Bi(2+) is one of the exceptions to this as we studied the luminescence properties at low (10-300 K) and high (300-500 K) temperatures. As Bi(2+) ions are incorporated into Sr2P2O7, they exhibit the emissions at ∼660 and ∼698 nm at room temperature and are encoded, hereafter, as Bi(1) and Bi(2) due to the substitutions for two different crystallographic sites Sr(1) and Sr(2), respectively, in the compound. However, they will not substitute for these sites equally. At lower dopant concentration, they will occupy preferentially Sr(2) sites partially due to size match. As the concentration increases, more Bi(2+) ions start to occupy the Sr(1) sites. This can be verified by the distinct changes of emission intensity ratio of Bi(2) to Bi(1). As environment temperature increases, the thermal quenching happens, but it can be suppressed by the Bi(2+) concentration increase. This becomes even more pronounced in Bi(2+) heavily doped sample as we decompose the broad emission band into separated Bi(1) and Bi(2) Gaussian peaks. For the sample, the Bi(1) emission at ∼660 nm even shows antithermal-quenching particularly at higher temperatures. This phenomenon is accompanied by the blue shift of the overall emission band and almost no changes of lifetimes. A mechanism is proposed due to volume expansion of the unit cell, the increase of Bi(1) content, and temperature dependent energy transfer between Bi(2) and Bi(1). This work helps us better understand the complex luminescent behavior of Bi(2+) doped materials, and it will be helpful to design in the future the heavily doped phosphor for WLEDs with even better resistance to thermal quenching.

19.
J Nanosci Nanotechnol ; 14(6): 4615-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738438

RESUMO

The preparation and oxygen sensing properties of Ru(ll) covalently-grafted and physically-incorporated silica based hybrid materials by sol-gel technique are described in this article. The Ru(II) complexes are successfully grafted onto the backbone of the silica via the condensation reaction of the tetraethoxysilane and the functionalized Ru(II) complex 2-[4'-{3-(Triethoxysilyl)propyl}phenyl]imidazo [4,5-f]-1,10-phenanthroline that contains the hydrolysable tri-alkoxylsilyl group. The luminescence quenching of Ru(II) complex by oxygen within the silica matrix is efficient. The oxygen quenching sensitivity of the covalently-grafted sample is higher than that of the physically-incorporated one due to the strong Si-CH2 bond that is useful to prolong the excited state lifetimes and enhance the photobleaching of the luminophore. The downward oxygen sensing Stern-Volmer plots can be well fitted using the Demas two-site model and the Lehrer model due to the heterogeneous distribution of the Ru(ll) complex within the sol-gel derived silica.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Oximetria/métodos , Oxigênio/análise , Rubídio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Oxigênio/química , Tamanho da Partícula , Transição de Fase
20.
J Agric Food Chem ; 72(3): 1473-1486, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38214288

RESUMO

Accumulation of cadmium (Cd) ions in soil is an increasingly acute ecological problem in agriculture production. Selenium nanoparticles (SeNPs) can mediate Cd tolerance in plants; however, the underlying mechanisms remain unclear. Herein, we show that the foliar application of SeNPs improved the adaptive capacity of tomato plants to decrease Cd-induced damage. SeNPs induced more Cd in roots but not in shoots despite greater accumulation of selenium and sulfur in both tissues and high selenate influx. Additionally, SeNPs significantly increased thiol compounds, including glutathione, cysteine, and phytochelatins, contributing to enhanced Cd detoxification. Importantly, SeNPs induced the expression of sulfate transporters 1:3, S-adenosylmethionine 1 and polyamine transporter 3. Then, experiments with mutants of these genes showed that SeNP-reduced Cd stress largely relies on the levels and shoot-to-root transport of selenium/sulfur and polyamines. These findings highlight the potential of SeNPs to improve crop production and phytoremediation in heavy metal-contaminated soils.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Cádmio/metabolismo , Selênio/metabolismo , Ácido Selenioso/metabolismo , Sulfatos , Plantas/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA