Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 138(17): 3711-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21775418

RESUMO

During neural tube development, Shh signaling through Gli transcription factors is necessary to establish five distinct ventral progenitor domains that give rise to unique classes of neurons and glia that arise in specific positions along the dorsoventral axis. These cells are generated from progenitors that display distinct transcription factor gene expression profiles in specific domains in the ventricular zone. However, the molecular genetic mechanisms that control the differential spatiotemporal transcriptional responses of progenitor target genes to graded Shh-Gli signaling remain unclear. The current study demonstrates a role for Tcf/Lef repressor activity in this process. We show that Tcf3 and Tcf7L2 (Tcf4) are required for proper ventral patterning and function by independently regulating two Shh-Gli target genes, Nkx2.2 and Olig2, which are initially induced in a common pool of progenitors that ultimately segregate into unique territories giving rise to distinct progeny. Genetic and functional studies in vivo show that Tcf transcriptional repressors selectively elevate the strength and duration of Gli activity necessary to induce Nkx2.2, but have no effect on Olig2, and thereby contribute to the establishment of their distinct expression domains in cooperation with graded Shh signaling. Together, our data reveal a Shh-Gli-independent transcriptional input that is required to shape the precise spatial and temporal response to extracellular morphogen signaling information during lineage segregation in the CNS.


Assuntos
Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Sistema Nervoso Central/citologia , Embrião de Galinha , Imunoprecipitação da Cromatina , Eletroporação , Elementos Facilitadores Genéticos/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Reação em Cadeia da Polimerase , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Fator de Transcrição 4 , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
2.
Development ; 137(23): 4051-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062862

RESUMO

The deployment of morphogen gradients is a core strategy to establish cell diversity in developing tissues, but little is known about how small differences in the concentration of extracellular signals are translated into robust patterning output in responding cells. We have examined the activity of homeodomain proteins, which are presumed to operate downstream of graded Shh signaling in neural patterning, and describe a feedback circuit between the Shh pathway and homeodomain transcription factors that establishes non-graded regulation of Shh signaling activity. Nkx2 proteins intrinsically strengthen Shh responses in a feed-forward amplification and are required for ventral floor plate and p3 progenitor fates. Conversely, Pax6 has an opposing function to antagonize Shh signaling, which provides intrinsic resistance to Shh responses and is important to constrain the inductive capacity of the Shh gradient over time. Our data further suggest that patterning of floor plate cells and p3 progenitors is gated by a temporal switch in neuronal potential, rather than by different Shh concentrations. These data establish that dynamic, non-graded changes in responding cells are essential for Shh morphogen interpretation, and provide a rationale to explain mechanistically the phenomenon of cellular memory of morphogen exposure.


Assuntos
Padronização Corporal , Retroalimentação Fisiológica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes Neurológicos , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios/citologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
3.
J Pharmacol Exp Ther ; 341(2): 510-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22353878

RESUMO

Human stem cell-derived cardiomyocytes provide new models for studying the ion channel pharmacology of human cardiac cells for both drug discovery and safety pharmacology purposes. However, detailed pharmacological characterization of ion channels in stem cell-derived cardiomyocytes is lacking. Therefore, we used patch-clamp electrophysiology to perform a pharmacological survey of the L-type Ca²âº channel in induced pluripotent and embryonic stem cell-derived cardiomyocytes and compared the results with native guinea pig ventricular cells. Six structurally distinct antagonists [nifedipine, verapamil, diltiazem, lidoflazine, bepridil, and 2-[(cis-2-phenylcyclopentyl)imino]-azacyclotridecane hydrochloride (MDL 12330)] and two structurally distinct activators [methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate (Bay K8644) and 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176)] were used. The IC50 values for the six antagonists showed little variability between the three cell types. However, whereas Bay K8644 produced robust increases in Ca²âº channel current in guinea pig myocytes, it failed to enhance current in the two stem cell lines. Furthermore, Ca²âº channel current kinetics after addition of Bay K8644 differed in the stem cell-derived cardiomyocytes compared with native cells. FPL 64176 produced consistently large increases in Ca²âº channel current in guinea pig myocytes but had a variable effect on current amplitude in the stem cell-derived myocytes. The effects of FPL 64176 on current kinetics were similar in all three cell types. We conclude that, in the stem cell-derived myocytes tested, L-type Ca²âº channel antagonist pharmacology is preserved, but the pharmacology of activators is altered. The results highlight the need for extensive pharmacological characterization of ion channels in stem cell-derived cardiomyocytes because these complex proteins contain multiple sites of drug action.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Cobaias , Coração/efeitos dos fármacos , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
4.
Dev Cell ; 11(3): 325-37, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16950124

RESUMO

Shh-Gli signaling controls cell fates in the developing ventral neural tube by regulating the patterned expression of transcription factors in neural progenitors. However, the molecular mechanisms that limit target gene responses to specific domains are unclear. Here, we show that Wnt pathway inhibitors regulate the threshold response of a ventral Shh target gene, Nkx2.2, to establish its restricted expression in the ventral spinal cord. Identification and characterization of an Nkx2.2 enhancer reveals that expression is directly regulated by positive Shh-Gli signaling and negative Tcf repressor activity. Our data indicate that the dorsal limit of Nkx2.2 is controlled by Tcf4-mediated transcriptional repression, and not by a direct requirement for high-level Shh-Gli signaling, arguing against a simple model based on differential Gli factor affinities in target genes. These results identify a transcriptional mechanism that integrates graded Shh and Wnt signaling to define progenitor gene expression domains and cell fates in the neural tube.


Assuntos
Sistema Nervoso Central/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Transcrição Gênica , Proteínas Wnt/antagonistas & inibidores , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Biomarcadores/análise , Galinhas , Sequência Conservada , Elementos Facilitadores Genéticos , Proteínas do Olho/genética , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Integrina alfa3/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Neurônios/química , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição TCF/genética , Fator de Transcrição 4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra , Proteína GLI1 em Dedos de Zinco
5.
J Neurosci ; 25(24): 5803-14, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15958747

RESUMO

General anesthetics have been a mainstay of surgical practice for more than 150 years, but the mechanisms by which they mediate their important clinical actions remain unclear. Ion channels represent important anesthetic targets, and, although GABA(A) receptors have emerged as major contributors to sedative, immobilizing, and hypnotic effects of intravenous anesthetics, a role for those receptors is less certain in the case of inhalational anesthetics. The neuronal hyperpolarization-activated pacemaker current (Ih) is essential for oscillatory and integrative properties in numerous cell types. Here, we show that clinically relevant concentrations of inhalational anesthetics modulate neuronal Ih and the corresponding HCN channels in a subunit-specific and cAMP-dependent manner. Anesthetic inhibition of Ih involves a hyperpolarizing shift in voltage dependence of activation and a decrease in maximal current amplitude; these effects can be ascribed to HCN1 and HCN2 subunits, respectively, and both actions are recapitulated in heteromeric HCN1-HCN2 channels. Mutagenesis and simulations suggest that apparently distinct actions of anesthetics on V(1/2) and amplitude represent different manifestations of a single underlying mechanism (i.e., stabilization of channel closed state), with the predominant action determined by basal inhibition imposed by individual subunit C-terminal domains and relieved by cAMP. These data reveal a molecular basis for multiple actions of anesthetics on neuronal HCN channels, highlight the importance of proximal C terminus in modulation of HCN channel gating by diverse agents, and advance neuronal pacemaker channels as potentially relevant targets for clinical actions of inhaled anesthetics.


Assuntos
Anestésicos/farmacologia , Encéfalo/fisiologia , Canais Iônicos/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Tronco Encefálico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Primers do DNA , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Hibridização In Situ , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio , Ratos , Mapeamento por Restrição , Tálamo/fisiologia
6.
Neuroscientist ; 9(1): 46-56, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12580339

RESUMO

Leak K+ currents contribute to the resting membrane potential and are important for modulation of neuronal excitability. Within the past few years, an entire family of genes has been described whose members form leak K+ channels, insofar as they generate potassium-selective currents with little voltage- and time-dependence. They are often referred to as "two-pore-domain" channels because of their predicted topology, which includes two pore-forming regions in each subunit. These channels are modulated by a host of different endogenous and clinical compounds such as neurotransmitters and anesthetics, and by physicochemical factors such as temperature, pH, oxygen tension, and osmolarity. They also are subject to long-term regulation by changes in gene expression. In this review, the authors describe multiple roles that modulation of leak K+ channels play in CNS function and discuss evidence that members of the two-pore-domain family are molecular substrates for these processes.


Assuntos
Sistema Nervoso Central/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Anestésicos/farmacologia , Animais , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Potenciais da Membrana , Neurônios/metabolismo , Neurotransmissores/fisiologia , Concentração Osmolar , Oxigênio/fisiologia , Canais de Potássio/metabolismo , RNA/metabolismo , Temperatura
7.
Mol Cells ; 15(1): 1-9, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12661754

RESUMO

Neuronal G protein-coupled inwardly-rectifying potassium channels (GIRKs, Kir3.x) can be activated or inhibited by distinct classes of receptors (Galphai/o and Galphaq/11-coupled, respectively), providing dynamic regulation of neuronal excitability. In this mini-review, we highlight findings from our laboratory in which we used a mammalian heterologous expression system to address mechanisms of GIRK channel regulation by Galpha and Gbetagamma subunits. We found that, like beta1- and beta2-containing Gbetagamma dimers, GIRK channels are also activated by G protein betagamma dimers containing beta3 and beta4 subunits. By contrast, GIRK currents are inhibited by beta5-containing Gbetagamma dimers and/or by Galpha proteins of the Galphaq/11 family. The properties of Gbeta5-mediated inhibition suggest that beta5-containing Gbetagamma dimers act as competitive antagonists of other activating Gbetagamma pairs on GIRK channels. Inhibition of GIRK channels by Galpha subunits is specific to members of the Galphaq/11 family and appears to result, at least in part, from activation of phospholipase C (PLC) and the resultant decrease in membrane levels of phosphatidylinositol-4,5-bisphosphate (PIP2), an endogenous co-factor necessary for GIRK channel activity; this Galphaq/11 activated mechanism is largely responsible for receptor-mediated GIRK channel inhibition.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/fisiologia , Ligação Competitiva , Linhagem Celular , Dimerização , Ativação Enzimática , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Ativação do Canal Iônico , Transporte de Íons , Rim , Potenciais da Membrana , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfatidilinositol Diacilglicerol-Liase , Potássio/metabolismo , Canais de Potássio/química , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Fosfolipases Tipo C/metabolismo
8.
J Biol Chem ; 280(34): 30175-84, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16006563

RESUMO

Background potassium channels determine membrane potential and input resistance and serve as prominent effectors for modulatory regulation of cellular excitability. TREK-1 is a two-pore domain background K+ channel (KCNK2, K2P2.1) that is sensitive to a variety of physicochemical and humoral factors. In this work, we used a recombinant expression system to show that activation of G alpha(q)-coupled receptors leads to inhibition of TREK-1 channels via protein kinase C (PKC), and we identified a critical phosphorylation site in a key regulatory domain that mediates inhibition of the channel. In HEK 293 cells co-expressing TREK-1 and either the thyrotropin-releasing hormone receptor (TRHR1) or the Orexin receptor (Orx1R), agonist stimulation induced robust channel inhibition that was suppressed by a bisindolylmaleimide PKC inhibitor but not by a protein kinase A blocker ((R(p))-cAMP-S). Channel inhibition by agonists or by direct activators of PKC (phorbol dibutyrate) and PKA (forskolin) was disrupted not only by alanine or aspartate mutations at an identified PKA site (Ser-333) in the C terminus, but also at a more proximal regulatory site in the cytoplasmic C terminus (Ser-300); S333A and S300A mutations enhanced basal TREK-1 current, whereas S333D and S300D substitutions mimicked phosphorylation and strongly diminished currents. When studied in combination, TREK-1 current density was enhanced in S300A/S333D but reduced in S300D/S333A mutant channels. Channel mutants were expressed and appropriately targeted to cell membranes. Together, these data support a sequential phosphorylation model in which receptor-induced kinase activation drives modification at Ser-333 that enables subsequent phosphorylation at Ser-300 to inhibit TREK-1 channel activity.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/química , Potássio/química , Alanina/química , Animais , Ácido Aspártico/química , Sítios de Ligação , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Receptores de Orexina , Dibutirato de 12,13-Forbol/farmacologia , Fosforilação , Canais de Potássio/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/química , Receptores do Hormônio Liberador da Tireotropina/química , Proteínas Recombinantes/química , Serina/química , Fatores de Tempo , Transfecção
9.
Development ; 131(15): 3593-604, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15215207

RESUMO

The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/embriologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Proteínas Hedgehog , Hibridização In Situ , Fatores de Transcrição Kruppel-Like , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA