Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(20): 14274-14282, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774417

RESUMO

An environmentally benign and efficient method for the synthesis of unsymmetrical diquinoxalin-2(1H)-ones with potential axial chirality via inexpensive copper-catalyzed, low-toxicity, and stable PIFA oxidation, rarely assisted by PhSeSePh, regioselective homocoupling of quinoxalin-2(1H)-ones under mild conditions is developed. This practical scheme is compatible with a variety of functional groups and allows the preparation of functionalized unsymmetrical dimeric quinoxalin-2(1H)-ones from readily available and safe starting materials, providing new ideas for the sustainable development of methodological studies of quinoxalin-2(1H)-ones.

2.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985484

RESUMO

The direct C-H multifunctionalization of quinoxalin-2(1H)-ones via multicomponent reactions has attracted considerable interest due to their diverse biological activities and chemical profile. This review will focus on recent achievements. It mainly covers reaction methods for the simultaneous introduction of C-C bonds and C-RF/C/O/N/Cl/S/D bonds into quinoxalin-2(1H)-ones and their reaction mechanisms. Meanwhile, future developments of multi-component reactions of quinoxalin-2(1H)-ones are envisaged, such as the simultaneous construction of C-C and C-B/SI/P/F/I/SE bonds through multi-component reactions; the construction of fused ring and macrocyclic compounds; asymmetric synthesis; green chemistry; bionic structures and other fields. The aim is to enrich the methods for the reaction of quinoxalin-2(1H)-ones at the C3 position, which have rich applications in materials chemistry and pharmaceutical pharmacology.

3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142788

RESUMO

The development of bifunctional ionic polymers as heterogeneous catalysts for effective, cocatalyst- and metal-free cycloaddition of carbon dioxide into cyclic carbonates has attracted increasing attention. However, facile fabrication of such polymers having high numbers of ionic active sites, suitable types of hydrogen bond donors (HBDs), and controlled spatial positions of dual active sites remains a challenging task. Herein, imidazolium-based ionic polymers with hydroxyl/carboxyl groups and high ionic density were facilely prepared by a one-pot quaternization reaction. Catalytic evaluation demonstrated that the presence of HBDs (hydroxyl or carboxyl) could enhance the catalytic activities of ionic polymers significantly toward the CO2 cycloaddition reaction. Among the prepared catalysts, carboxyl-functionalized ionic polymer (PIMBr-COOH) displayed the highest catalytic activity (94% yield) in the benchmark cycloaddition reaction of CO2 and epichlorohydrin, which was higher than hydroxyl-functionalized ionic polymer (PIMBr-OH, 76% yield), and far exceeded ionic polymer without HBDs groups (PIMBr, 54% yield). Furthermore, PIMBr-COOH demonstrated good recyclability and wide substrate tolerance. Under ambient CO2 pressure, a number of epoxides were smoothly cycloadded into cyclic carbonates. Additionally, density functional theory (DFT) calculation verified the formation of strong hydrogen bonds between epoxide and the HBDs of ionic polymers. Furthermore, a possible mechanism was proposed based on the synergistic effect between carboxyl and Br- functionalities. Thus, a facile, one-pot synthetic strategy for the construction of bifunctional ionic polymers was developed for CO2 fixation.


Assuntos
Dióxido de Carbono , Polímeros , Dióxido de Carbono/química , Carbonatos/química , Reação de Cicloadição , Epicloroidrina , Compostos de Epóxi/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA