Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; 63(2): e202313890, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38059792

RESUMO

Room-temperature phosphorescent (RTP) materials have great potential for in vivo imaging because they can circumvent the autofluorescence of biological tissues. In this study, a class of organic-doped long-wavelength (≈600 nm) RTP materials with benzo[c][1,2,5] thiadiazole as a guest was constructed. Both host and guest molecules have simple structures and can be directly purchased commercially at a low cost. Owing to the long phosphorescence wavelength of the doping system, it exhibited good tissue penetration (10 mm). Notably, these RTP nanoparticles were successfully used to image atherosclerotic plaques, with a signal-to-background ratio (SBR) of 44.52. This study provides a new approach for constructing inexpensive red organic phosphorescent materials and a new method for imaging cardiovascular diseases using these materials.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Temperatura , Diagnóstico por Imagem
2.
Angew Chem Int Ed Engl ; : e202406651, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781352

RESUMO

Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.

3.
Chembiochem ; 23(16): e202200138, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35676202

RESUMO

Cations such as divalent magnesium ion (Mg2+ ) play an essential role in DNA self-assembly. However, the strong electrostatic shielding effect of Mg2+ would be disadvantageous in some situations that require relatively weak interactions to allow a highly reversible error-correcting mechanism in the process of assembly. Herein, by substituting the conventional divalent Mg2+ with monovalent sodium ion (Na+ ), we have achieved one-pot high-yield assembly of tile-based DNA polyhedra at micromolar concentration of tiles, at least 10 times higher than the DNA concentrations reported previously. This strategy takes advantage of coexisting counterions and is expected to surmount the major obstacle to potential applications of such DNA nanostructures: large-scale production.


Assuntos
Nanoestruturas , Nanotecnologia , Cátions , DNA , Magnésio , Conformação de Ácido Nucleico , Sódio
4.
Org Biomol Chem ; 20(39): 7770-7775, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165885

RESUMO

Two novel 2,7-naphthyridine derivatives are unexpectedly synthesized by the reaction of 2-(3,5-diaryl-4H-pyran-4-ylidene)malononitrile and benzylamine, and are achieved through different ring-closing mechanisms. These two derivatives with twisted molecular conformations display phosphorescence, thermally activated delayed fluorescence, and high contrast solid-state acidochromism due to special chemical structures.


Assuntos
Nitrilas , Piranos , Benzilaminas , Naftiridinas , Nitrilas/química , Piranos/química
5.
Angew Chem Int Ed Engl ; 61(13): e202200236, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35102661

RESUMO

Monotonous luminescence has always been a major factor limiting the application of organic room-temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host-guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X-rays. Therefore, the triplet excitons were easily quenched and colorimetric multi-stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.

6.
Chemistry ; 26(72): 17376-17380, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33090590

RESUMO

Dual/multi-component organic doped systems with room-temperature phosphorescence (RTP) properties have been developed. However, the unknown luminescence mechanism still greatly limits the development of the doped materials. Herein, a new doped system exhibiting phosphorescence/fluorescence dual emission (Φphos =4-24 % and τphos =101-343 ms) is successfully constructed through prediction and design. A series of isoquinoline derivatives with different alkoxy chains were selected as the guests. Benzophenone was chosen as the host owing to the characteristics of low melting point and good crystallinity. The alkoxy chain lengths of the guests are first reported to be used to control the fluorescence and phosphorescence intensities of the doped materials, which results in different prompt emission colors. Additionally, the doped ratio of the guest and host can also control the luminous intensities of the materials. In particular, the doped materials still exhibit phosphorescent properties even if the ratio of the guest/host is as low as 1:100 000.

7.
Angew Chem Int Ed Engl ; 59(37): 16054-16060, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32500576

RESUMO

Organic materials with long-lived, color-tunable phosphorescence are potentially useful for optical recording, anti-counterfeiting, and bioimaging. Herein, we develop a series of novel host-guest organic phosphors allowing dynamic color tuning from the cyan (502 nm) to orange red (608 nm). Guest materials are employed to tune the phosphorescent color, while the host materials interact with the guest to activate the phosphorescence emission. These organic phosphors have an ultra-long lifetime of 0.7 s and a maximum phosphorescence efficiency of 18.2 %. Although color-tunable inks have already been developed using visible dyes, solution-processed security inks that are temperature dependent and display time-resolved printed images are unprecedented. This strategy can provide a crucial step towards the next-generation of security technologies for information handling.

8.
Chemistry ; 25(2): 573-581, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30357937

RESUMO

Five organic luminophores, 1,2,5-triphenylpyrrole (TPP) derivatives 3 a-e bearing electron-withdrawing or electron-donating groups, have been synthesized by Pd-catalyzed Suzuki coupling of 1-phenyl-2,5-di(4'-bromophenyl)pyrrole and para-substituted phenylboronic acid derivatives. They possess good thermal stabilities with high decomposition temperatures above 310 °C. Investigation of the photophysical properties of the luminogens 3 a-e indicated that they exhibited dual intense photoluminescence in both solution and the solid state due to their twisted conformations, and their fluorescence quantum yields (ΦF ) were determined as 68.7-94.9 % in THF solution and 19.1-52.0 % in solid powder form. Compounds 3 a-c bearing electron-accepting groups exhibited remarkable solvatochromism with large Stokes shifts, attributable to their D-π-A structure and intramolecular charge-transfer effect. In particular, 3 a, bearing aldehyde groups, displayed an obvious red-shift of the emission band from 445 to 564 nm with increasing solvent polarity. However, no obvious solvatochromic behavior was observed for compounds 3 d,e bearing electron-donating groups. The luminophore 3 a exhibited polymorphic luminescence properties and crystallization-induced emission enhancement.

9.
Chemistry ; 24(53): 14269-14274, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30014523

RESUMO

2,3,4,5-Tetraphenyl-1H-pyrrole (TePP) was synthesized by a simple one-step reaction. The compound showed a balanced emission in both the solution and solid state with the absolute quantum yield of ΦF/THF =65.6 % and ΦF/solid =74.3 %, respectively. Temperature and viscosity variation measurements demonstrated that the phenyl group at the 1-position (N-position) of the pyrrole core can act as a rotor in pyrrole-based molecules, which can consume the excited energy and reduce the molecular emission in solution. TePP without the phenyl group at the 1-position can effectively enhance the emission in solution. Single-crystal analysis showed that the phenyl groups at the 2,5-positions of pyrrole extend the molecular conjugation and lock the conformation. The phenyl groups at the 3,4-positions with a twisted conformation prevent their molecules from close packing and are helpful for aggregated emission. A delicate balance between the twisting conformation and rigid conjugation takes advantage of both ACQ and AIE luminogens. The strategy can tune the AIE, ACQ, or solution and solid dual-state emission properties of pyrrole-based molecules by simply altering the position of phenyl groups, which provides a great opportunity to explore the luminescent mechanism in greater detail and to facilitate practical applications.

10.
Chemistry ; 24(2): 434-442, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29028136

RESUMO

Eight donor-π-acceptor (D-π-A) compounds employing triphenylpyrrole isomers (TPP-1,2,5 and TPP-1,3,4) as donors, malononitrile (CN) and 1H-indene-1,3(2H)-dione (CO) as acceptors, pyridone (P) and benzopyran (B) as π-linking groups were synthesized. The compounds exhibited aggregation-induced emission and piezochromic properties. Compared with previously reported donors, triphenylpyrroles induced all the compounds to have more remarkable photophysical properties. The compounds containing TPP-1,2,5 and P moieties displayed stronger fluorescence intensities, shorter emission wavelengths, and more distinct piezochromic properties. However, the same phenomenon was observed in the TPP-1,3,4-containing system if B was as π-linker. Moreover, the CN acceptor endowed the compound to have a relatively strong fluorescent intensity, in which CO induced a relatively long emission wavelength. That is, the photophysical properties of D-π-A compounds can be controlled by adjusting the structure of donor, linker and acceptor.

11.
Chem Sci ; 15(12): 4222-4237, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516079

RESUMO

Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.

12.
Nat Commun ; 15(1): 1269, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341441

RESUMO

A strategy is pioneered for achieving high-temperature phosphorescence using planar rigid molecules as guests and rigid polymers as host matrix. The planar rigid configuration can resist the thermal vibration of the guest at high temperatures, and the rigidity of the matrix further enhances the high-temperature resistance of the guest. The doped materials exhibit an afterglow of 40 s at 293 K, 20 s at 373 K, 6 s at 413 K, and a 1 s afterglow at 433 K. The experimental results indicate that as the rotational ability of the groups connected to the guests gradually increases, the high-temperature phosphorescence performance of the doped materials gradually decreases. In addition, utilizing the property of doped materials that can emit phosphorescence at high temperatures and in high smoke, the attempt is made to use organic phosphorescence materials to identify rescue workers and trapped personnel in fires.

13.
J Phys Chem Lett ; 14(7): 1794-1807, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36763033

RESUMO

Small molecular host-guest doped materials exhibit superiority toward high-efficiency room-temperature phosphorescence (RTP) materials due to their structural design diversity and ease of preparation. Dynamic RTP materials display excellent characteristics, such as good reversibility, quick response, and tunable luminescence ability, making them applicable to various cutting-edge technologies. Herein, we summarize the advances in host-guest doped dynamic RTP materials that respond to external and internal stimuli and present some insights into the molecular design strategies and underlying mechanisms. Subsequently, specific viewpoints are described regarding this promising field for the development of dynamic RTP materials. This Perspective is highly beneficial for future intelligent applications of dynamic RTP systems.

14.
Chem Asian J ; 18(10): e202300213, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36988023

RESUMO

A novel 7a,8,10,11-tetrahydro-9H-pyrido[2',1':2,3][1,3]-oxazino[6,5,4-ij]isoquinoline derivative (POIQ) is accidentally obtained from an isoquinoline derivative and iodine in dimethyl sulfoxide, which is demonstrated to undergo a mechanism of demethylation and thus intramolecular nucleophilic substitution. POIQ with twisted molecular conformation and loose stacking arrangement shows multifunctional optical properties including dual-state emission, mechanochromic, and solid-state acidochromic activities. Furthermore, an organic room temperature phosphorescence (RTP) doped system with green afterglow of 2 s is constructed using POIQ as the guest and easily available phenyl benzoate as the host, in which the host molecules assist in the transfer of the triplet excitons of the guest molecules. Rewritable optical recording media and information encryption are also realized based on multifunctional optical properties of this compound. This work provides inspiration for the development of N,O-containing fused-ring compounds with fluorescence/RTP properties.

15.
Chem Commun (Camb) ; 58(79): 11143-11146, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106776

RESUMO

A novel doped system based on quaternary ammonium salts as hosts was established. Interestingly, it is the guest-activated hosts that emit room temperature phosphorescence, rather than the host-assisted guests in traditional doped systems.


Assuntos
Compostos de Amônio Quaternário , Sais , Temperatura
16.
Chem Asian J ; 17(7): e202200054, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156304

RESUMO

Although many organic mechanofluorochromic (MFC) materials have been reported, the design strategy and formation mechanism are still unclear, and thus some of their discoveries are based on chance or a result of blind screening of some compounds. Herein, we show a strategy for constructing MFC materials from a multisubstituted isoquinoline compound with excellent crystallinity. The introduction of bromine atom at 4-position realizes the morphological change from crystalline state to amorphous state under the stimulation of external pressure, but it is not enough to generate MFC phenomenon. Similarly, although naphthalene, benzofuran, and benzothiophene endow the resultant isoquinolines with twisted molecular conformations and aggregation-induced emission (AIE) activities, no obvious solid-state emission color changes are observed. However, the introduction of 2-benzylidenemalononitrile and (E)-2-cyano-3-phenylacrylate leads not only to the AIE activities of IQ-M and IQ-A, but also to their outstanding and reversible MFC properties. The MFC activities of these two derivatives are demonstrated to come from more twisted molecular conformations, larger deformation spaces, and stronger intramolecular charge transfer compared with the other isoquinolines. This work offers important reference value for the construction of MFC and AIE materials from traditional fluorophores.


Assuntos
Corantes Fluorescentes , Isoquinolinas , Corantes Fluorescentes/química , Conformação Molecular
17.
Nat Commun ; 13(1): 186, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013474

RESUMO

Organic near-infrared room temperature phosphorescence materials have unparalleled advantages in bioimaging due to their excellent penetrability. However, limited by the energy gap law, the near-infrared phosphorescence materials (>650 nm) are very rare, moreover, the phosphorescence lifetimes of these materials are very short. In this work, we have obtained organic room temperature phosphorescence materials with long wavelengths (600/657-681/732 nm) and long lifetimes (102-324 ms) for the first time through the guest-host doped strategy. The guest molecule has sufficient conjugation to reduce the lowest triplet energy level and the host assists the guest in exciton transfer and inhibits the non-radiative transition of guest excitons. These materials exhibit good tissue penetration in bioimaging. Thanks to the characteristic of long lifetime and long wavelength emissive phosphorescence materials, the tumor imaging in living mice with a signal to background ratio value as high as 43 is successfully realized. This work provides a practical solution for the construction of organic phosphorescence materials with both long wavelengths and long lifetimes.


Assuntos
Corantes Fluorescentes/síntese química , Substâncias Luminescentes/síntese química , Linfonodos/diagnóstico por imagem , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Benzofenonas/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/farmacocinética , Substâncias Luminescentes/análise , Substâncias Luminescentes/farmacocinética , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Pirenos/química , Piridinas/química , Espectroscopia de Luz Próxima ao Infravermelho
18.
Chem Commun (Camb) ; 58(8): 1179-1182, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981105

RESUMO

A host-guest system is constructed using a guest containing two selenium atoms. The selenium atoms can increase the spin-orbit coupling constant and the conjugation degree, thereby increasing the emission wavelength, and making the materials show only phosphorescence emission.

19.
J Phys Chem Lett ; 13(32): 7607-7617, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35950964

RESUMO

The construction of multicomponent doped systems is an important direction for the development of phosphorescence materials. Herein, benzophenone is selected as the host, phenylquinoline isomers are designed as guests, and seven metal ions are selected as the third component (Al3+, Cu+/2+, Zn2+, Ga3+, Ag+, Cd2+, and In3+) to construct the three-component doped system. Ag+ and Cd2+ can considerably increase the emission intensity up to 38 times, and the highest phosphorescence quantum efficiency reaches 70%. Al3+, Ga3+, and In3+ can prolong the emission wavelength, and the phosphorescence wavelength can be red-shifted up to 60 nm. Cu2+, Ga3+, and In3+ can extend the phosphorescence lifetime by a maximum of 3.6 times. A series of experiments demonstrated that the coordination of metals and guests is the key to improve the phosphorescence properties. This work presents a simple and effective strategy to enhance the phosphorescence properties of doped materials.

20.
J Phys Chem Lett ; 12(30): 7357-7364, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324348

RESUMO

Guest/host phosphorescence materials have attracted much attention; traditionally, researchers have focused on the influence of the electronic properties and energy levels of the molecules on the phosphorescence activities. However, the effects of the morphology on the phosphorescence properties are ignored. Herein, three isoquinoline guests with different aliphatic rings and three hosts are selected to construct guest/host materials. Experimental results confirm that the guests are dispersed in the host in the form of clusters. More importantly, the morphologies of the guest/host directly affect the phosphorescence properties. In these systems, the guests have strong intermolecular interactions, which are beneficial to stabilize the triplet excitons; meanwhile, the hosts should have weak intermolecular interactions with easily changed morphology to accept the guest clusters, which synergistically ensure that the doped materials have excellent RTP properties. This is the first work focusing on the effect of molecular morphology on the phosphorescence characteristics of guest/host systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA