Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 12(18): 1601-4, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12372253

RESUMO

Gridlock (grl) is one of the first mutations characterized from the large zebrafish mutagenesis screens, and it results in an arterial (aortic) maturation defect, which was proposed to resemble aortic coarctation, a clinically important human malformation. While the grl mutation appears to be a hypomorph, grl knockdown experiments have shown even stronger effects on arterial development. We have generated a knockout of the murine Hey2 (gridlock) gene to analyze the mammalian phenotype. Surprisingly, Hey2 loss does not affect aortic development, but it instead leads to a massive postnatal cardiac hypertrophy with high lethality during the first 10 days of life. This cardiomyopathy is ameliorated with time in surviving animals that do not appear to be manifestly impaired during adult life. These differences in phenotypes suggest that changes in expression or function of genes during evolution may lead to quite different pathological phenotypes, if impaired.


Assuntos
Coartação Aórtica/genética , Cardiomiopatia Hipertrófica Familiar/genética , Mutação , Proteínas/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Evolução Biológica , Cardiomiopatia Hipertrófica Familiar/embriologia , Cardiomiopatia Hipertrófica Familiar/patologia , Expressão Gênica , Humanos , Hibridização In Situ , Camundongos , Camundongos Knockout , Fenótipo , Fatores de Transcrição/fisiologia , Peixe-Zebra/genética
2.
Gene ; 345(1): 101-11, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716091

RESUMO

A family of functional neogenes called Mart, related to the gag gene of Sushi-like long terminal repeat retrotransposons from fish and amphibians, is present in the genome of human (11 genes) and other primates, as well as in mouse (11 genes), rat, dog (12 genes), cat, and cow. Mart genes have lost their capacity of retrotransposition through non-functionalizing rearrangements having principally affected long terminal repeats and pol open reading frame. Most Mart genes are located on the X chromosome in different mammals. Sequence database analysis suggested that Mart genes are present in opossum (marsupial), but absent from the genome of chicken. Hence, the Mart gene family might have been formed from Sushi-like retrotransposon(s) after the split of birds and mammals (310 myr ago), but before the divergence between placental mammals and marsupials (170 myr ago). RT-PCR analysis showed that at least six Mart genes are expressed during mouse embryonic development, with in situ hybridization analysis revealing rather ubiquitous expression patterns. Mart expression was also detected in adult mice, with some genes being expressed in all tissues tested, while others showed a much more restricted expression pattern. Although additional analysis will be required to establish the function of the retrotransposon-derived Mart neogenes, these observations support the evolutionary importance of retrotransposable elements as a source of genetic novelty.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Retroelementos/genética , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Produtos do Gene gag/genética , Rearranjo Gênico/genética , Humanos , Hibridização In Situ , Masculino , Mamíferos/genética , Camundongos , Dados de Sequência Molecular , Filogenia , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Gene Expr Patterns ; 3(5): 595-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12971992

RESUMO

The interaction of neighboring cells via Notch signalling leads to cell fate determination, differentiation and patterning of highly organized tissues. Mice with targeted disruption of genes from the Notch signal transduction pathway display defects in the developing somites, neurogenic structures, blood vessels, heart and other organs. Recent studies have added requirements for Notch signalling during kidney, pancreas and thymus morphogenesis. Here, we describe the expression of all four receptors (Notch1-4), the five transmembrane ligands (Dll1, 3, 4, Jag1 and Jag2), intracellular effectors (the Hey genes) and extracellular modulators (Lfng, Mfng, Rfng) in the developing mouse metanephros. Our results point to a Lfng-dependent role for Notch signalling in the development of nephron segments, especially the proximal tubules.


Assuntos
Camundongos/embriologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição , Animais , Glucosiltransferases , Glicosiltransferases/metabolismo , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/metabolismo , Ligantes , Camundongos/genética , Néfrons/metabolismo , Proteínas/metabolismo , Receptor Notch1 , Receptor Notch2
4.
Dev Dyn ; 230(2): 371-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15162516

RESUMO

The vertebrate kidney develops through a series of mesenchymal-epithelial interactions between the ureteric bud and the metanephrogenic mesenchyme to form nephrons and the collecting system, which are both embedded in the renal interstitium. The interstitial stromal cells are an essential prerequisite for regular kidney development, but their origin and function is poorly understood. They are found in the kidney periphery and the medulla and are likely derived from the kidney mesenchyme and/or from migrating neural crest cells. During late kidney development, stromal cells are lost through massive apoptosis. We have identified a novel marker of kidney stroma cells, Snep (stromal nidogen extracellular matrix protein), that is additionally expressed in mesenchymal cells of other embryonic tissues and within the nervous system. Of interest, Snep transcripts are also found at sites of embryonic apoptosis. Furthermore, comparative expression analysis of kidney stroma markers suggests that Snep is expressed in a specific subpopulation of stromal cells and may provide environmental cues to support regular development.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/química , Animais , Clonagem Molecular , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Rim/citologia , Rim/embriologia , Rim/metabolismo , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/metabolismo
5.
Dev Biol ; 249(2): 204-18, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12221002

RESUMO

Kidney development has often served as a model for epithelial-mesenchymal cell interaction where the branching epithelium of the ureteric bud induces the metanephrogenic mesenchyme to form epithelial nephrons. In a screen for genes differentially expressed during kidney development, we have identified a novel gene that is dynamically expressed in the branching ureter and the developing nephrons. It was designated Emu1 since it shares an N-terminal cysteine-rich domain with Emilin1/2 and Multimerin. This highly conserved EMI domain is also found in another novel protein (Emu2) of similar protein structure: an N-terminal signal peptide followed by the EMI domain, an interrupted collagen stretch, and a conserved C-terminal domain of unknown function. We identified two further secreted EMI domain proteins, prompting us to compare their gene and protein structures, the EMI domain phylogeny, as well as the embryonic expression pattern of known (Emilin1/2, Multimerin) and novel (Emu1/2, Emilin3, Multimerin2) Emu gene family members. Emu1 and Emu2 not only show a similar structural organization, but furthermore a striking complementary expression in organs developing through epithelial-mesenchymal interactions. In these tissues, Emu1 is restricted to epithelial and Emu2 to mesenchymal cells. Preliminary biochemical analysis of Emu1/2 confirmed that they are secreted glycoproteins which are attached to the extracellular matrix and capable of forming homo- and heteromers via disulfide bonding. The widespread, but individually distinct expression patterns of all Emu gene family members suggest multiple functions during mouse embryogenesis. Their multidomain protein structure may indicate that Emu proteins interact with several different extracellular matrix components and serve to connect and integrate the function of multiple partner molecules.


Assuntos
Mapeamento Cromossômico , Desenvolvimento Embrionário e Fetal , Proteínas da Matriz Extracelular/genética , Glicoproteínas/genética , Rim/embriologia , Glicoproteínas de Membrana/genética , Família Multigênica , Células 3T3 , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas da Matriz Extracelular/química , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/química , Humanos , Glicoproteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Urotélio/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA