Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(1): 017204, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863025

RESUMO

A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb(2)MnF(4) and MnF(2), over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wave vector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data. Comprehensive understanding of magnon lifetimes in simple antiferromagnets provides a solid foundation for current research on more complex magnets.

2.
Phys Rev Lett ; 106(16): 167203, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599408

RESUMO

Resonant magnetic x-ray scattering near the vanadium L2,3-absorption edges has been used to investigate the low temperature magnetic structure of high quality BaVS3 single crystals. Below T(N)=31 K, the strong resonance revealed a triple-incommensurate magnetic ordering at the wave vector (0.226   0.226   ξ) in hexagonal notation, with ξ=0.033. The azimuthal-angle dependence of the scattering signal and time-dependent density functional theory simulations indicate an antiferromagnetic order within the ab plane with the spins polarized along a in the monoclinic structure.

3.
Phys Rev Lett ; 102(3): 037205, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257388

RESUMO

X-ray diffraction with photon energies near the Ru L2-absorption edge was used to detect resonant reflections characteristic of a G-type superstructure in RuSr2GdCu2O8 single crystals. A polarization analysis confirms that these reflections are due to magnetic order of Ru moments, and the azimuthal-angle dependence of the scattering amplitude reveals that the moments lie along a low-symmetry axis with substantial components parallel and perpendicular to the RuO2 layers. Complemented by susceptibility data and a symmetry analysis of the magnetic structure, these results reconcile many of the apparently contradictory findings reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA