Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Appl Opt ; 60(1): 98-108, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362084

RESUMO

An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of ∼430nm when pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at ∼215nm, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixed CH4-H2-NH3-air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulent CH4-H2-NH3 diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

2.
Appl Opt ; 55(6): 1453-60, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26906600

RESUMO

This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

3.
Opt Express ; 22(7): 7962-71, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718172

RESUMO

Linear Raman scattering has been applied for the determination of the temperature of the liquid phase in water sprays under normal and superheated conditions. The envelope of the Raman OH-stretching vibration band of water is deconvoluted into five Gaussian peaks which can be assigned to five different intermolecular interactions (hydrogen bonding). The intensity of each of the peaks is a function of the temperature and the phase of the water under investigation. The interference of the Raman signals originating from the water vapor is eliminated from the Raman signals originating from the liquid water. Consequently the temperature of the liquid water droplets surrounded by water vapor is accessible which is favorable for the investigation of non-equilibrium sprays where the droplet temperature is different to the vapor temperature.

4.
Analyst ; 138(19): 5639-46, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23905163

RESUMO

The applicability of shifted-excitation Raman difference spectroscopy (SERDS) in combination with signal regression analysis as an alternative and non-invasive approach for monitoring the cultivation of phototrophic microorganisms producing complex molecules of pharmaceutical relevance in a bioreactor is demonstrated. As a model system, the cultivation of the red unicellular algae Porphyridium purpureum is used for focusing on the segregation of sulfated exopolysaccharides (EPS) which exhibit antiviral activity. The spectroscopic results obtained by partial linear least squares regression (PLSR) and by nonlinear support vector regression (SVR) are discussed against the corresponding results from the reference analytics based on the phenol-sulfuric acid assay. The SERDS-approach turns out to have strong potential as a non-invasive tool for online-monitoring of biotechnological processes.


Assuntos
Polissacarídeos/química , Rodófitas/química , Análise Espectral Raman/métodos , Máquina de Vetores de Suporte , Polissacarídeos/biossíntese , Rodófitas/metabolismo
5.
Appl Opt ; 52(33): 8001-7, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513750

RESUMO

Four potential laser-induced fluorescence (LIF) tracers, 1-phenyloctane, 1-phenyldecane, 1-methylnaphthalene, and 2-methylnaphthalene, are characterized for diesel engine applications. These tracers, embedded in the diesel primary reference fuels n-C16H34 and iso-C16H34, match the relevant physical properties of commercial diesel fuel much better than the commonly used toluene/iso-octane/n-heptane tracer-fuel system does. The temperature and pressure dependencies of the fluorescence intensities and spectra were measured in a flow cell in nitrogen for each candidate tracer molecule. The results show that the signal intensities of the methylnaphthalenes are about two orders of magnitude higher than for 1-phenyloctane and 1-phenyldecane and show a strong temperature but no pressure, dependence. An analysis of the fluorescence spectrum of 1-methylnaphthalene shows that it also can be used for two-color detection LIF thermometry by choosing appropriate optical filters.

6.
Appl Opt ; 52(25): 6300-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085091

RESUMO

This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study.

7.
Appl Opt ; 51(14): 2589-600, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22614478

RESUMO

The performance characteristics of a new CH planar laser-induced fluorescence (PLIF) imaging system composed of a kHz-rate multimode-pumped optical parametric oscillator (OPO) and high-speed intensified CMOS camera are investigated in laminar and turbulent CH4-H2-air flames. A multi-channel Nd:YAG cluster that produces up to 225 mJ at 355 nm with multiple-pulse spacing of 100 µs (corresponding to 10 kHz) is used to pump an OPO to produce up to 6 mJ at 431 nm for direct excitation of the A-X (0, 0) band of the CH radical. Single-shot signal-to-noise ratios of 82:1 and 7.5:1 are recorded in laminar premixed flames relative to noise in the background and within the flame layer, respectively. The spatial resolution and image quality are sufficient to accurately measure the CH layer thickness of ~0.4 mm while imaging the detailed evolution of turbulent flame structures over a 20 mm span. Background interferences due to polycyclic-aromatic hydrocarbons and Rayleigh scattering are minimized and, along with signal linearity, allow semi-quantitative analysis of CH signals on a shot-to-shot basis. The effects of design features, such as cavity finesse and passive injection seeding, on conversion efficiency, stability, and linewidth of the OPO output are also discussed.

8.
Appl Opt ; 51(25): 6063-75, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22945152

RESUMO

For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O(2)-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles.

9.
Opt Express ; 19(12): 11052-8, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716333

RESUMO

Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented.

10.
Opt Lett ; 36(19): 3927-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964144

RESUMO

We report on high-speed CH planar laser-induced fluorescence (PLIF) imaging in turbulent diffusion flames using a multimode-pumped optical parametric oscillator (OPO). The OPO is pumped by the third-harmonic output of a multimode Nd:YAG cluster for direct signal excitation in the A-X (0,0) band of the CH radical. The lasing threshold, conversion efficiency, and linewidth are shown to depend on the number of pump passes in the ring cavity of the OPO. Single-shot CH PLIF images are acquired at 10 kHz with excitation energy up to 6 mJ/pulse at 431.1 nm. Signal-to-noise ratios of ~25-35 are the highest yet reported for high-speed CH PLIF.

11.
Phys Chem Chem Phys ; 13(20): 9525-33, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21487585

RESUMO

The present study shows that dynamic light scattering (DLS) is capable of measuring mutual diffusion coefficients for binary mixtures of ionic liquids (ILs) with different molecular liquids over the complete composition range. Evidence is given that the light scattering signals are related to true molecular binary diffusion. The method stands out due to its ability to work non-invasively in macroscopic thermodynamic equilibrium with reasonable accuracy and within convenient measurement periods. Compared with other techniques, mixtures with distinctly higher viscosities can be probed. For exemplary binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO(4)]) with acetone, acetonitrile, dichloromethane, ethanol, or water as well as of 1-ethyl-3-methylimidazolium methanesulfonate ([EMIM][MeSO(3)]) with acetone, water, or methanol, mutual diffusivity data were measured over a wide range of composition at a temperature of 293.15 K. In general, the mutual diffusivity increases with increasing mole fraction of the molecular liquid and similarities to aqueous solutions of classical inorganic salts can be found. The characteristic behavior of the mutual diffusion coefficients is influenced by the nature of the chosen molecular liquid. For IL water mixtures, low light scattering intensities were observed despite the large refractive index difference of the pure components. The reason for this behavior may be the existence of water clusters in the mixtures. Additional measurements for IL acetone mixtures at temperatures ranging from 278.15 K to 323.15 K showed that the temperature dependence of the mutual diffusivity can be represented by Arrhenius functions and is increasing for decreasing mole fractions of acetone.

12.
Opt Express ; 18(17): 18223-8, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721212

RESUMO

To understand the reaction mechanisms taking place by growing carbon nanotubes via the catalytic chemical vapor deposition process, a strategy to monitor in situ the gas phase at reaction conditions was developed applying linear Raman spectroscopy. The simultaneous determination of the gas temperature and composition was possible by a new strategy of the evaluation of the Raman spectra. In agreement to the well-known exothermic decomposition of acetylene, a gas temperature increase was quantified when acetylene was added to the incident flow. Information about exhaust gas recirculation and location of the maximal acetylene conversion was derived from the composition measurements.


Assuntos
Acetileno/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Análise Espectral Raman/métodos , Desenho de Equipamento , Gases/química , Lasers de Estado Sólido , Nanotecnologia/instrumentação , Análise Espectral Raman/instrumentação , Temperatura
13.
Opt Express ; 18(22): 22762-71, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164614

RESUMO

A Q-switched laser based system for broadband absorption spectroscopy in the range of 1390-1740 nm (7200-5750 cm(-1)) has been developed and tested. In the spectrometer the 1064 nm light of a 25 kHz repetition-rate micro-chip Nd:YAG laser is directed into a photonic crystal fiber to produce a short (about 2 ns) pulse of radiation in a wide spectral range. This radiation is passed through a 25 km long dispersive single-mode fiber in order to spread the respective wavelengths over a time interval of about 140 ns at the fiber output. This fast swept-wavelength light source allows to record gas absorption spectra by temporally-resolved detection of the transmitted light power. The realized spectral resolution is about 2 cm(-1). Examples of spectra recorded in a cell with CO(2):CH(4):N(2) gas mixtures are presented. An algorithm employed for the evaluation of molar concentrations of different species from the spectra with non-overlapping absorption bands of mixture components is described. The uncertainties of the concentration values retrieved at different acquisition times due to the required averaging are evaluated. As an example, spectra with a signal-to-noise ratio large enough to provide species concentrations with a relative error of 5% can be obtained in real time at a millisecond time scale. Potentials and limitations of this technique are discussed.

14.
Opt Express ; 18(24): 24579-87, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164804

RESUMO

A novel and completely tracer free strategy to image composition and velocity fields during the mixing process of two liquids is introduced. The achieved temporal resolution, spatial resolution and sampling rate of 30 ns, 54 x 54 µm2 and 10 kHz, respectively, are sufficient to resolve Kolmogorov time and length scales as well as transient mixing phenomena of many technical mixing processes. During the injection of liquid water into liquid ethanol, mixing was quantitatively observed by means of high repetition rate Raman imaging using a laser cluster for the excitation of the Raman process with 8 successive light sheet pulses. One high speed camera was used to detect the CH-vibration Raman band signal of ethanol, while a second one was used to detect the OH-vibration Raman band signal of water and ethanol. From the ratio of both, the mixture composition field was computed. The dense flow field was determined by processing the mixture composition images with a variational optical flow method.

15.
Opt Lett ; 35(15): 2553-5, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680055

RESUMO

We used two-dimensional laser Raman scattering and elastic light scattering to analyze mixture driven particle formation in the supercritical antisolvent process. Using only one excitation laser, the partial density of the antisolvent CO(2), the composition of the solvent/antisolvent mixture, and the occurrence of particle formation can be analyzed simultaneously. Thus, all main parameters that influence the process of particle formation and, subsequently, the desired properties of the produced powder are accessible.

16.
Chemphyschem ; 11(3): 630-7, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20024975

RESUMO

The effects of hydrogen bonding between dimethyl sulfoxide (DMSO) and the co-solvents water, methanol, and ethanol on the symmetric and antisymmetric CSC stretching vibrations of DMSO are investigated by means of Raman spectroscopy. The Raman spectra are recorded as a function of co-solvent concentration and reflect changes in structure and polarizability as well as hydrogen-bond donor and acceptor ability. In all cases studied a nonideal mixing behavior is observed. The spectra of the DMSO/water system show blue-shifted CSC stretching modes. The antisymmetric frequencies are always further blue-shifted than the symmetric stretching ones. The DMSO/methanol system also features blue-shifted CSC stretching frequencies but at high mole fractions a pronounced red shifting is observed. In the binary DMSO/ethanol system, the co-solvent also gives rise to blue shifts of the CSC stretching frequencies but restricted to mole fractions between x=0.38 and 0.45. The different magnitudes and occurrences of both blue- and red-shifted spectral lines are comprehensively and critically discussed with respect to the existing literature concerning wavenumbers and Raman intensities in both absolute and normalized values. In particular, the normalized Raman intensities show a higher sensitivity for the nonideal mixing behavior because they are independent of the mole fraction.

17.
Langmuir ; 26(8): 5971-5, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20345184

RESUMO

The present work provides new information on the characteristics of ion implanted metallic surfaces responsible for the adjustment of stable dropwise condensation (DWC) of steam. The results are based on condensation experiments and surface analyses via contact angle (CA) and surface free energy (SFE) measurements as well as scanning electron microscopy (SEM). For studying possible influences of the base material and the implanted ion species, commercially pure titanium grade 1, aluminum alloy Al 6951, and stainless steel AISI 321 were treated with N(+), C(+), O(+), or Ar(+) using ion beam implantation technology. The studies suggest that chemically inhomogeneous surfaces are instrumental in inducing DWC. As this inhomogeneity is apparently caused by particulate precipitates bonded to the metal surface, the resulting nanoscale surface roughness may also influence the condensation form. On such surfaces nucleation mechanisms seem to be capable of maintaining DWC even when CA and SFE measurements indicate increased wettability. The precipitates are probably formed due to the supersaturation of ion implanted metal surfaces with doping elements. For high-alloyed materials like AISI 321 or Hastelloy C-276, oxidation stimulated by the condensation process obviously tends to produce similar surfaces suitable for DWC.

18.
Phys Chem Chem Phys ; 12(42): 14153-61, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20871893

RESUMO

Methylation of the C2 position of 1,3-dialkylimidazolium based ionic liquids disrupts the predominant hydrogen-bonding interaction between cation and anion leading to unexpected changes of the physicochemical properties. We found the viscosity of 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)C(1)C(1)Im][Tf(2)N], for example, to be about three times higher than that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)C(1)Im][Tf(2)N]. In order to explain these macroscopic changes upon methylation we investigated the vibrational as well as the magnetic resonance structure of [Tf(2)N](-) salts involving the cations 1-ethyl-3-methylimidazolium [C(2)C(1)Im](+), 1-ethyl-2,3-dimethylimidazolium [C(2)C(1)C(1)Im](+), 1-butyl-3-methylimidazolium [C(4)C(1)Im](+), and 1-butyl-2,3-dimethylimidazolium [C(4)C(1)C(1)Im](+) by means of Fourier-transform infrared (FTIR), Raman and (13)C NMR as well as (1)H NMR spectroscopy aiming a better microscopic understanding of the cation-anion interaction. To reveal the impact of methylating the C2 position and changing the alkyl side chain length of the imidazolium a detailed assignment of the individual peaks is followed by a comparative discussion of the spectral features also considering already published work. Our spectroscopic findings deduce electron density changes leading to changes in the position and strength of interionic interactions and reduced configurational variations. Both facts are represented on a macroscopic level by the viscosity and melting point. Therefore changes on a macroscopic level clearly express molecular alterations which in turn can be observed using spectroscopic methods as Raman, IR and NMR.

19.
Appl Opt ; 49(1): 37-49, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20062488

RESUMO

Although the fluorescence behavior of acetone has already been examined widely, the amount of data is still not sufficient for the quantification of signals over the parameter field relevant for combustion engines. This leads to large uncertainties when new excitation wavelengths are applied or in cases where temperature and pressure and bath gas composition dependences of the fluorescence yield must be extrapolated from models. This work presents calibration results of the fluorescence signal intensities in nitrogen, air, and an exhaust-gas-air mixture in the wide range from 298 to 748 K and from 0.2 bar (0.02 MPa) to 20 bars for the two important excitation wavelengths 308 and 248 nm. Based on this data, measurements of temperature and exhaust gas concentrations in a fired spark ignition engine were performed with high accuracy in single-shot images also.

20.
Opt Lett ; 34(20): 3122-4, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19838246

RESUMO

We report the combined application of Ramanography and particle image velocimetry (PIV) for the investigation of gas mixing processes. A droplet seeded hydrogen flow was injected as a free jet into pressurized nitrogen at 0.95 MPa. Ramanography and PIV were used to quantitatively image the mixture composition and the flow field of the mixing process, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA