Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 554(7691): 224-228, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420466

RESUMO

Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.


Assuntos
Madeira/química , Ligas/química , Parede Celular/química , Celulose/química , Temperatura Alta , Lignina/química , Lignina/isolamento & purificação , Metais/química , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Hidróxido de Sódio/química , Sulfitos/química , Resistência à Tração , Madeira/classificação
2.
Exp Neurol ; 289: 9-20, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27923561

RESUMO

Many victims of blast-induced traumatic brain injury are occupants of military vehicles targeted by land mines. Recently improved vehicle designs protect these individuals against blast overpressure, leaving acceleration as the main force potentially responsible for brain injury. We recently developed a unique rat model of under-vehicle blast-induced hyperacceleration where exposure to acceleration as low as 50G force results in histopathological evidence of diffuse axonal injury and astrocyte activation, with no evidence of neuronal cell death. This study investigated the effects of much higher blast-induced accelerations (1200 to 2800G) on neuronal cell death, neuro-inflammation, behavioral deficits and mortality. Adult male rats were subjected to this range of accelerations, in the absence of exposure to blast overpressure, and evaluated over 28days for working memory (Y maze) and anxiety (elevated plus maze). In addition, brains obtained from rats at one and seven days post-injury were used for neuropathology and neurochemical assays. Sixty seven percent of rats died soon after being subjected to blasts resulting in 2800G acceleration. All rats exposed to 2400G acceleration survived and exhibited transient deficits in working memory and long-term anxiety like behaviors, while those exposed to 1200 acceleration G force only demonstrated increased anxiety. Behavioral deficits were associated with acute microglia/macrophage activation, increased hippocampal neuronal death, and reduced levels of tight junction- and synapse- associated proteins. Taken together, these results suggest that exposure of rats to high underbody blast-induced G forces results in neurologic injury accompanied by neuronal apoptosis, neuroinflammation and evidence for neurosynaptic alterations.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Regulação da Expressão Gênica/fisiologia , Aceleração/efeitos adversos , Animais , Antígenos de Diferenciação/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/mortalidade , Caspase 3/metabolismo , Ciclina D1/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Proteína da Zônula de Oclusão-1/metabolismo , Fator de von Willebrand/metabolismo
3.
J Neurotrauma ; 34(11): 1972-1980, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322622

RESUMO

Blast-related traumatic brain injury (bTBI) resulting from improvised explosive devices is the hallmark injury of recent wars, and affects many returning veterans who experienced either direct or indirect exposure. Many of these veterans have long-term neurocognitive symptoms. However, there is very little evidence to show whether blast-induced acceleration alone, in the absence of secondary impacts, can cause mild TBI. In this study, we examine the effect of under-vehicle blast-induced hyperacceleration (uBIH) of ∼1700 g on the biochemical and microstrucutral changes in the brain using diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Two groups of adult male Sprague-Dawley (SD) rats were subjected to a sham procedure and uBIH, respectively. Axonal and neurochemical alterations were assessed using in vivo DTI and MRS at 2 h, 24 h, and 7 days after uBIH. Significant reduction in mean diffusivity, axial diffusivity, and radial diffusivity were observed in the hippocampus, thalamus, internal capsule, and corpus callosum as early as 2 h, and sustained up to 7 days post-uBIH. Total creatine (Cr) and glutamine (Gln) were reduced in the internal capsule at 24 h post-uBIH. The reductions in DTI parameters, Cr and Gln in vivo suggest potential activation of astrocytes and diffuse axonal injury following a single underbody blast, confirming previous histology reports.


Assuntos
Aceleração/efeitos adversos , Traumatismos por Explosões/diagnóstico por imagem , Imagem de Tensor de Difusão/tendências , Hipocampo/diagnóstico por imagem , Cápsula Interna/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Animais , Traumatismos por Explosões/metabolismo , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Imagem de Tensor de Difusão/métodos , Hipocampo/metabolismo , Cápsula Interna/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos , Ratos Sprague-Dawley
4.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S35-S42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452879

RESUMO

BACKGROUND: Occupants of military vehicles targeted by explosive devices often suffer from traumatic brain injury (TBI) and are typically transported by the aeromedical evacuation (AE) system to a military medical center within a few days. This study tested the hypothesis that exposure of rats to AE-relevant hypobaria worsens cerebral axonal injury and neurologic impairment caused by underbody blasts. METHODS: Anesthetized adult male rats were secured within cylinders attached to a metal plate, simulating the hull of an armored vehicle. An explosive located under the plate was detonated, resulting in a peak vertical acceleration force on the plate and occupant rats of 100G. Rats remained under normobaria or were exposed to hypobaria equal to 8,000 feet in an altitude chamber for 6 hours, starting at 6 hours to 6 days after blast. At 7 days, rats were tested for vestibulomotor function using the balance beam walking task and euthanized by perfusion. The brains were then analyzed for axonal fiber injury. RESULTS: The number of internal capsule silver-stained axonal fibers was greater in animals exposed to 100G blast than in shams. Animals exposed to hypobaria starting at 6 hours to 6 days after blast exhibited more silver-stained fibers than those not exposed to hypobaria. Rats exposed to 100% oxygen (O2) during hypobaria at 24 hours postblast displayed greater silver staining and more balance beam foot-faults, in comparison with rats exposed to hypobaria under 21% O2. CONCLUSION: Exposure of rats to blast-induced acceleration of 100G increases cerebral axonal injury, which is significantly exacerbated by exposure to hypobaria as early as 6 hours and as late as 6 days postblast. Rats exposed to underbody blasts and then to hypobaria under 100% O2 exhibit increased axonal damage and impaired motor function compared to those subjected to blast and hypobaria under 21% O2. These findings raise concern about the effects of AE-related hypobaria on TBI victims, the timing of AE after TBI, and whether these effects can be mitigated by supplemental oxygen.


Assuntos
Pressão Atmosférica , Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Aceleração , Resgate Aéreo , Altitude , Animais , Axônios/patologia , Modelos Animais de Doenças , Masculino , Medicina Militar , Neurônios/patologia , Ratos
5.
J Trauma Acute Care Surg ; 77(3 Suppl 2): S83-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25159367

RESUMO

BACKGROUND: More than 300,000 US war fighters in Operations Iraqi and Enduring Freedom have sustained some form of traumatic brain injury (TBI), caused primarily by exposure to blasts. Many victims are occupants in vehicles that are targets of improvised explosive devices. These underbody blasts expose the occupants to vertical acceleration that can range from several to more than 1,000 G; however, it is unknown if blast-induced acceleration alone, in the absence of exposure to blast waves and in the absence of secondary impacts, can cause even mild TBI. METHODS: We approached this knowledge gap using rats secured to a metal platform that is accelerated vertically at either 20 G or 50 G in response to detonation of a small explosive (pentaerythritol tetranitrate) located at precise underbody standoff distances. All rats survived the blasts and were perfusion fixed for brain histology at 4 hours to 30 days later. RESULTS: Robust silver staining indicative of axonal injury was apparent throughout the internal capsule, corpus callosum, and cerebellum within 24 hours after blast exposure and was sustained for at least 7 days. Astrocyte activation, as measured morphologically with brains immunostained for glial fibrillary acidic protein, was also apparent early after the blast and persisted for at least 30 days. CONCLUSION: Exposure of rats to underbody blast-induced accelerations at either 20 G or 50 G results in histopathologic evidence of diffuse axonal injury and astrocyte activation but no significant neuronal death. The significance of these results is that they demonstrate that blast-induced vertical acceleration alone, in the absence of exposure to significant blast pressures, causes mild TBI. This unique animal model of TBI caused by underbody blasts may therefore be useful in understanding the pathophysiology of blast-induced mild TBI and for testing medical and engineering-based approaches toward mitigation.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Aceleração/efeitos adversos , Animais , Traumatismos por Explosões/etiologia , Bombas (Dispositivos Explosivos) , Encéfalo/patologia , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA