Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(13): 5397-5413, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046694

RESUMO

Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias Hepáticas/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , N-Acetilglucosaminiltransferases/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Nanobiotechnology ; 17(1): 119, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801555

RESUMO

The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived extracellular vesicles (EVs) were isolated and molecularly characterized to be then studied in neurite outgrowth assays. The EVs, mainly composed of exosomes and microparticles, are an important cell-to-cell communication process as they exhibit different types of mediators (proteins, lipids, nucleic acids) to recipient cells. The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk due to their easy collection for primary cultures. After the microglia-derived EV isolation following successive methods, we developed their large-scale and non-targeted proteomic analysis to (i) detect as many EV protein markers as possible, (ii) better understand the biologically active proteins in EVs and (iii) evaluate the resulting protein signatures in EV-activated neurons. The EV functional properties were also evaluated in neurite outgrowth assays on rat primary neurons and the RNAseq analysis of the microglia-derived EVs was performed to propose the most representative miRNAs in microglia-derived EVs. This strategy allowed validating the EV isolation, identify major biological pathways in EVs and corroborate the regenerative process in EV-activated neurons. In parallel, six different miRNAs were originally identified in microglia-derived EVs including 3 which were only known in plants until now. The analysis of the neuronal proteins under the microglial EV activation suggested possible miRNA-dependent regulation mechanisms. Taken together, this combination of methodologies showed the leech microglial EVs as neuroprotective cargos across species and contributed to propose original EV-associated miRNAs whose functions will have to be evaluated in the EV-dependent dialog between microglia and neurons.


Assuntos
Vesículas Extracelulares/genética , MicroRNAs/genética , Microglia/citologia , Animais , Fracionamento Celular , Células Cultivadas , Cromatografia em Gel , Sanguessugas/citologia , Sanguessugas/genética , Microglia/metabolismo , Neuroproteção , Ratos , Ratos Wistar , Transcriptoma , Ultracentrifugação
3.
Int J Mol Sci ; 19(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572617

RESUMO

In healthy or pathological brains, the neuroinflammatory state is supported by a strong communication involving microglia and neurons. Recent studies indicate that extracellular vesicles (EVs), including exosomes and microvesicles, play a key role in the physiological interactions between cells allowing central nervous system (CNS) development and/or integrity. The present report used medicinal leech CNS to investigate microglia/neuron crosstalk from ex vivo approaches as well as primary cultures. The results demonstrated a large production of exosomes from microglia. Their incubation to primary neuronal cultures showed a strong interaction with neurites. In addition, neurite outgrowth assays demonstrated microglia exosomes to exhibit significant neurotrophic activities using at least a Transforming Growth Factor beta (TGF-ß) family member, called nGDF (nervous Growth/Differentiation Factor). Of interest, the results also showed an EV-mediated dialog between leech microglia and rat cells highlighting this communication to be more a matter of molecules than of species. Taken together, the present report brings a new insight into the microglia/neuron crosstalk in CNS and would help deciphering the molecular evolution of such a cell communication in brain.


Assuntos
Sistema Nervoso Central/metabolismo , Exossomos/metabolismo , Hirudo medicinalis/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Técnicas de Cocultura , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Microglia/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Cells ; 12(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37408229

RESUMO

The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.


Assuntos
Núcleo Celular , Processamento de Proteína Pós-Traducional , Animais , Transdução de Sinais/fisiologia , Transporte Proteico , Nutrientes , Mamíferos
5.
J Vis Exp ; (160)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32568235

RESUMO

The neuroinflammatory state of the central nervous system (CNS) plays a key role in physiological and pathological conditions. Microglia, the resident immune cells in the brain, and sometimes the infiltrating bone marrow-derived macrophages (BMDMs), regulate the inflammatory profile of their microenvironment in the CNS. It is now accepted that the extracellular vesicle (EV) populations from immune cells act as immune mediators. Thus, their collection and isolation are important to identify their contents but also evaluate their biological effects on recipient cells. The present data highlight chronological requirements for EV isolation from microglia cells or blood macrophages including the ultracentrifugation and size-exclusion chromatography (SEC) steps. A non-targeted proteomic analysis permitted the validation of protein signatures as EV markers and characterized the biologically active EV contents. Microglia-derived EVs were also functionally used on primary culture of neurons to assess their importance as immune mediators in the neurite outgrowth. The results showed that microglia-derived EVs contribute to facilitate the neurite outgrowth in vitro. In parallel, blood macrophage-derived EVs were functionally used as immune mediators in spheroid cultures of C6 glioma cells, the results showing that these EVs control the glioma cell invasion in vitro. This report highlights the possibility to evaluate the EV-mediated immune cell functions but also understand the molecular bases of such a communication. This deciphering could promote the use of natural vesicles and/or the in vitro preparation of therapeutic vesicles in order to mimic immune properties in the microenvironment of CNS pathologies.


Assuntos
Macrófagos/citologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Linhagem Celular Tumoral , Microglia/citologia , Proteômica , Ratos , Microambiente Tumoral
6.
Sci Rep ; 9(1): 6896, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053759

RESUMO

Neuronal activity is closely influenced by glia, especially microglia which are the resident immune cells in the central nervous system (CNS). Microglia in medicinal leech are the only cells able to migrate to the injury site within the 24 hours post-lesion. The microglia-neuron interactions constitute an important mechanism as there is neither astrocyte nor oligodendrocyte in the leech CNS. Given that axonal sprouting is impaired when microglia recruitment is inhibited, the crosstalk between microglia and neurons plays a crucial role in neuroprotection. The present results show that neurons and microglia both use ALK4/5 (a type of TGF-ß receptor) signaling in order to maintain mutual exchanges in an adult brain following an axonal injury. Indeed, a TGF-ß family member (nGDF) is immediately released by injured axons contributing to the early recruitment of ALK4/5+ microglia to the lesion site. Surprisingly, within the following hours, nGDF from microglia activates ALK4/5+ neurons to maintain a later microglia accumulation in lesion. Taken together, the results demonstrate that ALK4/5 signaling is essential throughout the response to the lesion in the leech CNS and gives a new insight in the understanding of this pathway. This latter is an important signal contributing to a correct sequential mobilization over time of microglia recruitment leading to axon regeneration.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Axônios/patologia , Microglia/patologia , Neurônios/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/química , Sequência de Aminoácidos , Animais , Quimiotaxia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA