Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Org Divers Evol ; 23(4): 743-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046835

RESUMO

An endolithic lifestyle in mineralized substrates has evolved multiple times in various phyla including Bryozoa. The family Penetrantiidae includes one genus with ten extant and two fossil species. They predominantly colonize the shells of molluscs and establish colonies by chemical dissolution of calcium carbonate. Based on several morphological characters, they were described to be either cheilostome or ctenostome bryozoans. For more than 40 years, neither the characters of species identity and systematics nor the problem of their phylogeny was approached. Consequently, the aim of this study is to reevaluate species identities and the systematic position of the genus Penetrantia by analyzing at least six different species from eight regions with the aid of modern methods such as confocal laser scanning microscopy and 3D-reconstruction techniques. This study demonstrates that the musculature associated with the operculum and brood chamber shows significant differences from the cheilostome counterparts and seems to have evolved independently. Together with the presence of other ctenostome-like features such as true polymorphic stolons and uncalcified body wall, this finding supports a ctenostome affinity. Operculum morphology reveals many new species-specific characters, which, together with information about gonozooid morphology, tentacle number, and zooid size ranges, will enhance species identification. It also revealed a probable new species in Japan as well as potential cryptic species in France and New Zealand. In addition, this study increases the known distribution range of the family and its substrate diversity. Altogether, the new information collated here provides the basis for future work on a neglected taxon. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00612-z.

2.
Coral Reefs ; 41(2): 293-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368716

RESUMO

As global ocean temperatures continue to rise, severe declines in coral reef health and diversity are reported on a global scale. Recovery of coral reefs relies on reproduction and increased rates of successful recruitment, which can vary tremendously across coral species. We investigated the effects of increased temperatures in the environment of parental colonies on larval production, size, settlement and survival, in the heat-resistant coral Leptastrea purpurea in Guam. Thanks to two tank experiments (eleven and four weeks, respectively) conducted over two consecutive years we found that larvae released by heat-treated parents (30 °C) were significantly smaller in size but greater in number, had normal settlement behavior and increased post-settlement survival rates compared to those released by control parent colonies (28 °C). We conclude that changes in the environment of parental L. purpurea colonies trigger an anticipatory maternal effect which leads to the release of preconditioned larvae with an increased chance of survival. Supplementary Information: The online version contains supplementary material available at 10.1007/s00338-022-02241-y.

3.
Mol Ecol ; 30(9): 2009-2024, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33655552

RESUMO

Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Simbiose , Temperatura
4.
Mol Phylogenet Evol ; 162: 107207, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34023487

RESUMO

Island communities that rely on reef fish are currently faced with declining marine resources due to unsustainable fishing and climate change. Identification of genetic stocks through phylogenetic analyses has become a growing field of study with conservation implications, but genetic information on reef fish in Micronesia is limited. In this study we focus on Lethrinidae, one of the most commonly fished reef fish families in Micronesia. Our main goal was to establish a phylogeny for Lethrinidae based on Micronesian data with the intent to help future conservation efforts and clarify the evolutionary history of trophic types in this family. Thirty-eight Lethrinidae specimens collected across five Micronesian islands were used to build a phylogeny with three mitochondrial and one nuclear gene. The phylogenetic analyses allowed us to clarify the identity and position of 11 commonly harvested species and provided a novel genetic identification for Monotaxis heterodon in Micronesia. Our improved and dated phylogeny supports a new hypothesis for the ancestral trophic type of emperor fishes: "stalkers" with low-bodies and conical teeth. We correlated the radiation of most Lethrinidae species with the radiation of major scleractinian coral lineages in the middle Miocene, highlighting the tight relationships between declining reefs and the survival of emperor fishes.


Assuntos
Peixes/classificação , Peixes/genética , Filogenia , Animais , Antozoários , Mudança Climática , Recifes de Corais , Micronésia
5.
Ecol Appl ; 31(7): e02409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255400

RESUMO

Harvesting models are based upon the ideology that removing large, old individuals provides space for young, fast-growing counterparts that can maximize (fisheries) yields while maintaining population stability and ecosystem function. Yet, this compensatory density dependent response has rarely been examined in multispecies systems. We combined extensive data sets from coral-reef fisheries across a suite of Pacific islands and provided unique context to the universal assumptions of compensatory density dependence. We reported that size-and-age truncation only existed for 49% of target coral-reef fishes exposed to growing fishing pressure across a suite of Pacific islands. In contrast, most of the remaining species slowly disappeared from landings and reefs with limited change to their size structure (i.e., little to no compensation), often becoming replaced by smaller-bodied sister species. To understand these remarkable and disparate differences, we constructed phylogenies for dominant fish families and discovered that large patristic distances between sister species, or greater phylogenetic isolation, predicted size-and-age truncation. Isolated species appeared to have greater niche dominance or breadth, supported by their faster growth rates compared to species with similar sizes and within similar guilds, and many also have group foraging behavior. In contrast, closely related species may have more restricted, realized niches that led to their disappearance and replacement. We conclude that phylogenetic attributes offered novel guidance to proactively manage multispecies fisheries and improve our understanding of ecological niches and ecosystem stability.


Assuntos
Antozoários , Pesqueiros , Animais , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Peixes , Filogenia
6.
BMC Evol Biol ; 20(1): 50, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357841

RESUMO

BACKGROUND: Photosymbiotic associations between metazoan hosts and photosynthetic dinoflagellates are crucial to the trophic and structural integrity of many marine ecosystems, including coral reefs. Although extensive efforts have been devoted to study the short-term ecological interactions between coral hosts and their symbionts, long-term evolutionary dynamics of photosymbiosis in many marine animals are not well understood. Within Bivalvia, the second largest class of mollusks, obligate photosymbiosis is found in two marine lineages: the giant clams (subfamily Tridacninae) and the heart cockles (subfamily Fraginae), both in the family Cardiidae. Morphologically, giant clams show relatively conservative shell forms whereas photosymbiotic fragines exhibit a diverse suite of anatomical adaptations including flattened shells, leafy mantle extensions, and lens-like microstructural structures. To date, the phylogenetic relationships between these two subfamilies remain poorly resolved, and it is unclear whether photosymbiosis in cardiids originated once or twice. RESULTS: In this study, we establish a backbone phylogeny for Cardiidae utilizing RNASeq-based transcriptomic data from Tridacninae, Fraginae and other cardiids. A variety of phylogenomic approaches were used to infer the relationship between the two groups. Our analyses found conflicting gene signals and potential rapid divergence among the lineages. Overall, results support a sister group relationship between Tridacninae and Fraginae, which diverged during the Cretaceous. Although a sister group relationship is recovered, ancestral state reconstruction using maximum likelihood-based methods reveals two independent origins of photosymbiosis, one at the base of Tridacninae and the other within a symbiotic Fraginae clade. CONCLUSIONS: The newly revealed common ancestry between Tridacninae and Fraginae brings a possibility that certain genetic, metabolic, and/or anatomical exaptations existed in their last common ancestor, which promoted both lineages to independently establish photosymbiosis, possibly in response to the modern expansion of reef habitats.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/efeitos da radiação , Bivalves/genética , Bivalves/efeitos da radiação , Luz , Filogenia , Simbiose/genética , Transcriptoma/genética , Animais , Calibragem , Evolução Molecular , Fósseis , Funções Verossimilhança , Fotossíntese/fisiologia
7.
Proc Biol Sci ; 286(1896): 20182684, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963927

RESUMO

Bivalvia has been the subject of extensive recent phylogenetic work to attempt resolving either the backbone of the bivalve tree using transcriptomic data, or the tips using morpho-anatomical data and up to five genetic markers. Yet the first approach lacked decisive taxon sampling and the second failed to resolve many interfamilial relationships, especially within the diverse clade Imparidentia. Here we combine dense taxon sampling with 108 deep-sequenced Illumina-based transcriptomes to provide resolution in nodes that required additional study. We designed specific data matrices to address the poorly resolved relationships within Imparidentia. Our results support the overall backbone of the bivalve tree, the monophyly of Bivalvia and all its main nodes, although the monophyly of Protobranchia remains less clear. Likewise, the inter-relationships of the six main bivalve clades were fully supported. Within Imparidentia, resolution increases when analysing Imparidentia-specific matrices. Lucinidae, Thyasiridae and Gastrochaenida represent three early branches. Gastrochaenida is sister group to all remaining imparidentians, which divide into six orders. Neoheterodontei is always fully supported, and consists of Sphaeriida, Myida and Venerida, with the latter now also containing Mactroidea, Ungulinoidea and Chamidae, a family particularly difficult to place in earlier work. Overall, our study, by using densely sampled transcriptomes, provides the best-resolved bivalve phylogeny to date.


Assuntos
Bivalves/classificação , Filogenia , Transcriptoma , Animais , Bivalves/genética , Cardiidae/classificação , Cardiidae/genética , Perfilação da Expressão Gênica
8.
Proc Biol Sci ; 286(1906): 20190831, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288696

RESUMO

Proper biological interpretation of a phylogeny can sometimes hinge on the placement of key taxa-or fail when such key taxa are not sampled. In this light, we here present the first attempt to investigate (though not conclusively resolve) animal relationships using genome-scale data from all phyla. Results from the site-heterogeneous CAT + GTR model recapitulate many established major clades, and strongly confirm some recent discoveries, such as a monophyletic Lophophorata, and a sister group relationship between Gnathifera and Chaetognatha, raising continued questions on the nature of the spiralian ancestor. We also explore matrix construction with an eye towards testing specific relationships; this approach uniquely recovers support for Panarthropoda, and shows that Lophotrochozoa (a subclade of Spiralia) can be constructed in strongly conflicting ways using different taxon- and/or orthologue sets. Dayhoff-6 recoding sacrifices information, but can also reveal surprising outcomes, e.g. full support for a clade of Lophophorata and Entoprocta + Cycliophora, a clade of Placozoa + Cnidaria, and raising support for Ctenophora as sister group to the remaining Metazoa, in a manner dependent on the gene and/or taxon sampling of the matrix in question. Future work should test the hypothesis that the few remaining uncertainties in animal phylogeny might reflect violations of the various stationarity assumptions used in contemporary inference methods.


Assuntos
Genômica , Filogenia , Animais , Classificação
9.
Mol Phylogenet Evol ; 135: 249-269, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30780003

RESUMO

Fissurellidae are marine gastropods with a worldwide distribution and a rich fossil record. We integrate molecular, geographical and fossil data to reconstruct the fissurellid phylogeny, estimate divergence times and investigate historical routes of oceanic dispersal. With five molecular markers for 143 terminals representing 27 genera, we resolve deep nodes and find that many genera (e.g., Emarginula, Diodora, Fissurella) are not monophyletic and need systematic revision. Several genera classified as Emarginulinae are recovered in Zeidorinae. Future work should prioritize emarginuline genera to improve understanding of ancestral traits and the early evolution of fissurellids. Tree calibration with the fossilized birth-death model indicates that crown fissurellids originated around 175 Ma, and generally resulted in younger ages for the earliest nodes than the node dating approach. Model-based biogeographic reconstruction, supported by fossils, infers an Indo-West Pacific origin, with a westward colonization of new oceans via the Tethys Seaway upon the breakup of Pangea. Western Atlantic clades then served as source for dispersal towards other parts of the globe. As the sister group to all other fissurellids, Rimula is ranked in its own subfamily, Rimulinae stat. nov. New synonyms: Hemitominae syn. nov. of Zeidorinae stat. nov.; Cranopsissyn. nov. of Puncturella; Variegemarginulasyn. nov. of Montfortula.


Assuntos
Organismos Aquáticos/classificação , Internacionalidade , Moluscos/classificação , Filogenia , Filogeografia , Animais , Biodiversidade , Fósseis , Modelos Biológicos
10.
Mol Ecol ; 26(21): 5923-5938, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28872211

RESUMO

Living fossils are survivors of previously more diverse lineages that originated millions of years ago and persisted with little morphological change. Therefore, living fossils are model organisms to study both long-term and ongoing adaptation and speciation processes. However, many aspects of living fossil evolution and their persistence in the modern world remain unclear. Here, we investigate three major aspects of the evolutionary history of living fossils: cryptic speciation, population genetics and effective population sizes, using members of the genera Nautilus and Allonautilus as classic examples of true living fossils. For this, we analysed genomewide ddRAD-Seq data for all six currently recognized nautiloid species throughout their distribution range. Our analyses identified three major allopatric Nautilus clades: a South Pacific clade, subdivided into three subclades with no signs of admixture between them; a Coral Sea clade, consisting of two genetically distinct populations with significant admixture; and a widespread Indo-Pacific clade, devoid of significant genetic substructure. Within these major clades, we detected five Nautilus groups, which likely correspond to five distinct species. With the exception of Nautilus macromphalus, all previously described species are at odds with genomewide data, testifying to the prevalence of cryptic species among living fossils. Detailed FST analyses further revealed significant genome-wide and locus-specific signatures of selection between species and differentiated populations, which is demonstrated here for the first time in a living fossil. Finally, approximate Bayesian computation (ABC) simulations suggest large effective population sizes, which may explain the low levels of population differentiation commonly observed in living fossils.


Assuntos
Especiação Genética , Genética Populacional , Nautilus/classificação , Animais , Teorema de Bayes , Nautilus/genética , Filogenia , Densidade Demográfica , Transcriptoma
11.
Mol Phylogenet Evol ; 107: 191-208, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27840226

RESUMO

The systematics of the molluscan class Bivalvia are explored using a 5-gene Sanger-based approach including the largest taxon sampling to date, encompassing 219 ingroup species spanning 93 (or 82%) of the 113 currently accepted bivalve families. This study was designed to populate the bivalve Tree of Life at the family level and to place many genera into a clear phylogenetic context, but also pointing to several major clades where taxonomic work is sorely needed. Despite not recovering monophyly of Bivalvia or Protobranchia-as in most previous Sanger-based approaches to bivalve phylogeny-our study provides increased resolution in many higher-level clades, and supports the monophyly of Autobranchia, Pteriomorphia, Heteroconchia, Palaeoheterodonta, Heterodonta, Archiheterodonta, Euheterodonta, Anomalodesmata, Imparidentia, and Neoheterodontei, in addition to many other lower clades. However, deep nodes within some of these clades, especially Pteriomorphia and Imparidentia, could not be resolved with confidence. In addition, many families are not supported, and several are supported as non-monophyletic, including Malletiidae, Nuculanidae, Yoldiidae, Malleidae, Pteriidae, Arcidae, Propeamussiidae, Iridinidae, Carditidae, Myochamidae, Lyonsiidae, Pandoridae, Montacutidae, Galeommatidae, Tellinidae, Semelidae, Psammobiidae, Donacidae, Mactridae, and Cyrenidae; Veneridae is paraphyletic with respect to Chamidae, although this result appears to be an artifact. The denser sampling however allowed testing specific placement of species, showing, for example, that the unusual Australian Plebidonax deltoides is not a member of Donacidae and instead nests within Psammobiidae, suggesting that major revision of Tellinoidea may be required. We also showed that Cleidothaerus is sister group to the cementing member of Myochamidae, suggesting that Cleidothaeridae may not be a valid family and that cementation in Cleidothaerus and Myochama may have had a single origin. These results highlight the need for an integrative approach including as many genera as possible, and that the monophyly and relationships of many families require detailed reassessment. NGS approaches may be able to resolve the most recalcitrant nodes in the near future.


Assuntos
Bivalves/classificação , Bivalves/genética , Filogenia , Análise de Sequência de DNA/métodos , Animais , Teorema de Bayes , Funções Verossimilhança
12.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358369

RESUMO

Mussels (Mytilida) are a group of bivalves with ancient origins and some of the most important commercial shellfish worldwide. Mytilida consists of approximately 400 species found in various littoral and deep-sea environments, and are part of the higher clade Pteriomorphia, but their exact position within the group has been unstable. The multiple adaptive radiations that occurred within Pteriomorphia have rendered phylogenetic classifications difficult and uncertainty remains regarding the relationships among most families. To address this phylogenetic uncertainty, novel transcriptomic data were generated to include all five orders of Pteriomorphia. Our results, derived from complex analyses of large datasets from 41 transcriptomes and evaluating possible pitfalls affecting phylogenetic reconstruction (matrix occupancy, heterogeneity, evolutionary rates, evolutionary models), consistently recover a well-supported phylogeny of Pteriomorphia, with the only exception of the most complete but smallest data matrix (Matrix 3: 51 genes, 90% gene occupancy). Maximum-likelihood and Bayesian mixture model analyses retrieve strong support for: (i) the monophyly of Pteriomorphia, (ii) Mytilida as a sister group to Ostreida, and (iii) Arcida as sister group to all other pteriomorphians. The basal position of Arcida is congruent with its shell microstructure (solely composed of aragonitic crystals), whereas Mytilida and Ostreida display a combination of a calcitic outer layer with an aragonitic inner layer composed of nacre tablets, the latter being secondarily lost in Ostreoidea.


Assuntos
Bivalves/classificação , Ostreidae/classificação , Filogenia , Animais , Teorema de Bayes , Transcriptoma
13.
BMC Genomics ; 16: 568, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231360

RESUMO

BACKGROUND: Color polymorphism in the nacre of pteriomorphian bivalves is of great interest for the pearl culture industry. The nacreous layer of the Polynesian black-lipped pearl oyster Pinctada margaritifera exhibits a large array of color variation among individuals including reflections of blue, green, yellow and pink in all possible gradients. Although the heritability of nacre color variation patterns has been demonstrated by experimental crossing, little is known about the genes involved in these patterns. In this study, we identify a set of genes differentially expressed among extreme color phenotypes of P. margaritifera using a suppressive and subtractive hybridization (SSH) method comparing black phenotypes with full and half albino individuals. RESULTS: Out of the 358 and 346 expressed sequence tags (ESTs) obtained by conducting two SSH libraries respectively, the expression patterns of 37 genes were tested with a real-time quantitative PCR (RT-qPCR) approach by pooling five individuals of each phenotype. The expression of 11 genes was subsequently estimated for each individual in order to detect inter-individual variation. Our results suggest that the color of the nacre is partially under the influence of genes involved in the biomineralization of the calcitic layer. A few genes involved in the formation of the aragonite tablets of the nacre layer and in the biosynthesis chain of melanin also showed differential expression patterns. Finally, high variability in gene expression levels were observed within the black phenotypes. CONCLUSIONS: Our results revealed that three main genetic processes were involved in color polymorphisms: the biomineralization of the nacreous and calcitic layers and the synthesis of pigments such as melanin, suggesting that color polymorphism takes place at different levels in the shell structure. The high variability of gene expression found within black phenotypes suggests that the present work should serve as a basis for future studies exploring more thoroughly the expression patterns of candidate genes within black phenotypes with different dominant iridescent colors.


Assuntos
Cor , Nácar/genética , Pinctada/genética , Animais , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Fenótipo
14.
Mol Phylogenet Evol ; 83: 174-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450098

RESUMO

Sipunculans (also known as peanut worms) are an ancient group of exclusively marine worms with a global distribution and a fossil record that dates back to the Early Cambrian. The systematics of sipunculans, now considered a distinct subclade of Annelida, has been studied for decades using morphological and molecular characters, and has reached the limits of Sanger-based approaches. Here, we reevaluate their family-level phylogeny by comparative transcriptomic analysis of eight species representing all known families within Sipuncula. Two data matrices with alternative gene occupancy levels (large matrix with 675 genes and 62% missing data; reduced matrix with 141 genes and 23% missing data) were analysed using concatenation and gene-tree methods, yielding congruent results and resolving each internal node with maximum support. We thus corroborate prior phylogenetic work based on molecular data, resolve outstanding issues with respect to the familial relationships of Aspidosiphonidae, Antillesomatidae and Phascolosomatidae, and highlight the next area of focus for sipunculan systematics.


Assuntos
Filogenia , Poliquetos/classificação , Transcriptoma , Animais , Biblioteca Gênica , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 75: 11-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24569016

RESUMO

The family Pinnidae Leach, 1819, includes approximately 50 species of large subtidal and coastal marine bivalves. These commercially important species occur in tropical and temperate waters around the world and are most frequently found in seagrass meadows. The taxonomy of the family has been revised a number of times since the early 20th Century, the most recent revision recognizing 55 species distributed in three genera: Pinna, Atrina and Streptopinna, the latter being monotypic. However, to date no phylogenetic analysis of the family has been conducted using morphological or molecular data. The present study analyzed 306 pinnid specimens from around the world, comprising the three described genera and ca. 25 morphospecies. We sequenced the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I, and the nuclear ribosomal genes 18S rRNA and 28S rRNA. Phylogenetic analysis of the data revealed monophyly of the genus Atrina but also that the genus Streptopinna is nested within Pinna. Based on the strong support for this relationship we propose a new status for Streptopinna Martens, 1880 and treat it as a subgenus (status nov.) of Pinna Linnaeus, 1758. The phylogeny and the species delimitation analyses suggest the presence of cryptic species in many morphospecies displaying a wide Indo-Pacific distribution, including Pinna muricata, Atrina assimilis, A. exusta and P. (Streptopinna) saccata but also in the Atlantic species A. rigida. Altogether our results highlight the challenges associated with morphological identifications in Pinnidae due to the presence of both phenotypic plasticity and morphological stasis and reveal that many pinnid species are not as widely distributed as previously thought.


Assuntos
Bivalves/classificação , Filogenia , Animais , Teorema de Bayes , Bivalves/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Funções Verossimilhança , Modelos Genéticos , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
17.
Zoological Lett ; 10(1): 10, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877577

RESUMO

As in most colonial and sessile marine invertebrates, bryozoan life history is characterized by asexual propagation of zooids for colonial growth and by sexual production of larvae for dispersal. However, comprehensive life histories, particularly in cryptic species such as endolithic (boring) bryozoans, remain poorly understood. The ctenostome family Penetrantiidae is widespread from temperate to tropical waters and often found in molluscan shells, offering an opportunity to study the boring lifestyle and its potential impact on bioerosion through growth and settlement experiments. Our research focused on Penetrantia clionoides from Guam in the Pacific Ocean, Penetrantia japonica from Japan, and a Penetrantia species from France in the Atlantic Ocean. We found distinct life histories and reproductive patterns potentially influenced by environmental factors such as temperature and food availability. The tropical P. clionoides displayed higher rates of larval production and growth compared to its temperate counterpart. For instance, the mean stolon extension was 335.2 µm/week in P. clionoides versus 232.1 µm/week in Penetrantia sp. Autozooid development took 13 days in P. clionoides and 31 days in Penetrantia sp. Anatomical features like apertural rims aided in species identification and in understanding larval settlement preferences, suggesting a tendency for philopatric settlement behavior. The bioerosional impact of penetrantiids remains little understood, but we generated first projections of bioerosion rates and a protocol for keeping Penetrantia under laboratory conditions, laying a foundation for further research in this field.

18.
Wellcome Open Res ; 9: 129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989474

RESUMO

We present a genome assembly from an individual specimen of Fragum fragum (a heart cockle; Mollusca; Bivalvia; Veneroida; Cardiidae). The genome sequence is 1,153.1 megabases in span. Most of the assembly is scaffolded into 19 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 22.36 kilobases in length. Gene annotation of this assembly on Ensembl identified 17,262 protein coding genes.

19.
Ecol Evol ; 14(4): e11276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638369

RESUMO

Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxon to the remaining ctenostomes alongside paludicellids, arachnidioids and terebriporids. The boring family Terebriporidae d'Orbigny, 1847 were previously considered to be among vesicularioids, but our results suggest an arachnidioid affinity instead. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.

20.
Commun Biol ; 6(1): 769, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481685

RESUMO

Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.


Assuntos
Antozoários , Dióxido de Carbono , Animais , Antozoários/genética , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Água do Mar , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA