Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Genet ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856159

RESUMO

Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra-rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3.

2.
Mol Psychiatry ; 26(6): 2663-2676, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33414497

RESUMO

Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Cognição , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Humanos , Testes de Inteligência
3.
Hum Mol Genet ; 27(4): 589-600, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29267967

RESUMO

FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.


Assuntos
Espinhas Dendríticas/metabolismo , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Adulto , Idoso , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Pessoa de Meia-Idade , Morfogênese/genética , Morfogênese/fisiologia , Mutação/genética , Neurogênese/genética , Neurogênese/fisiologia , Linhagem , Adulto Jovem
4.
J Med Genet ; 56(10): 701-710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451536

RESUMO

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Epilepsia/genética , Cardiopatias/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Cardiopatias/congênito , Humanos , Mutação com Perda de Função , Masculino , Deleção de Sequência
5.
Pediatr Cardiol ; 41(2): 230-236, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31720744

RESUMO

The frequency of chromosomal anomalies among fetuses with isolated persistent left superior vena cava (PLSVC) is still debated. The objective of the present study was to assess the prevalence of genetic and morphological anomalies identified in fetuses with PLSVC. We conducted a single-center retrospective study including all fetuses diagnosed with a PLSVC between 2010 and 2017. PLSVC was categorized as isolated or associated according to antenatal diagnosis of associated congenital heart defects, hypoplastic aortic isthmus, abnormal venous/arterial connections, and extracardiac anomalies. Among 229 fetuses diagnosed with PLSVC, 39 cases (17%) were strictly isolated and no syndromic/genetic anomaly or aortic coarctation was diagnosed. Seventy-two fetuses had a cardiovascular defect with a rate of genetic anomalies of 22%, 29 had an extracardiac malformation, and 89 had both an extracardiac and a cardiovascular defect. Among fetuses with abnormal development of the arterial/venous system as the only associated anomaly such as aberrant right subclavian artery or absent ductus venosus, 22% had a genetic anomaly. Overall, sixty-five fetuses or infants had a genetic concern, including 23 aneuploidies, 15 pathogenic micro-deletions/duplications, and 5 variants of unknown significance; 12 patients had VACTERL association, and 12 heterotaxy syndrome. Seven infants had an aortic coarctation diagnosed at birth.In conclusion, a thorough prenatal ultrasound examination is paramount, and the identification of variants of the venous/arterial system in addition to PLSVC should raise suspicion for genetic or morphologic abnormalities. Invasive prenatal diagnosis with array-CGH should be offered when PLSVC is non-isolated, after a detailed ultrasound evaluation in a tertiary center.


Assuntos
Doenças Fetais/epidemiologia , Cardiopatias Congênitas/epidemiologia , Malformações Vasculares/epidemiologia , Veia Cava Superior/diagnóstico por imagem , Feminino , Doenças Fetais/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/embriologia , Humanos , Lactente , Masculino , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/embriologia , Veia Cava Superior/embriologia
6.
Genet Med ; 21(5): 1058-1064, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30245510

RESUMO

PURPOSE: Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. METHODS: Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. RESULTS: All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. CONCLUSIONS: We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Proteínas de Membrana/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 16 , Estudos de Coortes , Feminino , Proteínas Ativadoras de GTPase , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Síndrome , Adulto Jovem
8.
Genes Chromosomes Cancer ; 57(6): 311-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427526

RESUMO

The advent of large scale genomic sequencing technologies significantly improved the molecular classification of acute megakaryoblastic leukaemia (AMKL). AMKL represents a subset (∼10%) of high fatality pediatric acute myeloid leukemia (AML). Recurrent and mutually exclusive chimeric gene fusions associated with pediatric AMKL are found in 60%-70% of cases and include RBM15-MKL1, CBFA2T3-GLIS2, NUP98-KDM5A and MLL rearrangements. In addition, another 4% of AMKL harbor NUP98 rearrangements (NUP98r), with yet undetermined fusion partners. We report a novel NUP98-BPTF fusion in an infant presenting with primary refractory AMKL. In this NUP98r, the C-terminal chromatin recognition modules of BPTF, a core subunit of the NURF (nucleosome remodeling factor) ATP-dependent chromatin-remodeling complex, are fused to the N-terminal moiety of NUP98, creating an in frame NUP98-BPTF fusion, with structural homology to NUP98-KDM5A. The leukemic blasts expressed two NUP98-BPTF splicing variants, containing one or two tandemly spaced PHD chromatin reader domains. Our study also identified an unreported wild type BPTF splicing variant encoding for 2 PHD domains, detected both in normal cord blood CD34+ cells and in leukemic blasts, as with the fly BPTF homolog, Nurf301. Disease course was marked by rapid progression and primary chemoresistance, with ultimately significant tumor burden reduction following treatment with a clofarabine containing regimen. In sum, we report 2 novel NUP98-BPTF fusion isoforms that contribute to refine the NUP98r subgroup of pediatric AMKL. Multicenter clinical trials are critically required to determine the frequency of this fusion in AMKL patients and explore innovative treatment strategies for a disease still plagued with poor outcomes.


Assuntos
Antígenos Nucleares/genética , Leucemia Megacarioblástica Aguda/genética , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fatores de Transcrição/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Humanos , Lactente , Cariotipagem , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Masculino , Splicing de RNA
9.
Am J Hum Genet ; 97(5): 744-53, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26477546

RESUMO

Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.


Assuntos
Cerebelo/anormalidades , Cílios/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Retina/anormalidades , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Canadá/epidemiologia , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/metabolismo , Exoma/genética , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/epidemiologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Masculino , Linhagem , Prognóstico , Retina/patologia , Adulto Jovem
10.
Genet Med ; 20(7): 745-753, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29261186

RESUMO

PURPOSE: Fetal anomalies represent a poorly studied group of developmental disorders. Our objective was to assess the impact of whole-exome sequencing (WES) on the investigation of these anomalies. METHODS: We performed WES in 101 fetuses or stillborns who presented prenatally with severe anomalies, including renal a/dysgenesis, VACTERL association (vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, renal anomalies, and limb abnormalities), brain anomalies, suspected ciliopathies, multiple major malformations, and akinesia. RESULTS: A molecular diagnosis was obtained in 19 cases (19%). In 13 of these cases, the diagnosis was not initially suspected by the clinicians because the phenotype was nonspecific or atypical, corresponding in some cases to the severe end of the spectrum of a known disease (e.g., MNX1-, RYR1-, or TUBB-related disorders). In addition, we identified likely pathogenic variants in genes (DSTYK, ACTB, and HIVEP2) previously associated with phenotypes that were substantially different from those found in our cases. Finally, we identified variants in novel candidate genes that were associated with perinatal lethality, including de novo mutations in GREB1L in two cases with bilateral renal agenesis, which represents a significant enrichment of such mutations in our cohort. CONCLUSION: Our study opens a window on the distinctive genetic landscape associated with fetal anomalies and highlights the power-but also the challenges-of WES in prenatal diagnosis.


Assuntos
Anormalidades Congênitas/genética , Feto/anormalidades , Nefropatias/congênito , Rim/anormalidades , Proteínas de Neoplasias/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adulto , Canal Anal/anormalidades , Esôfago/anormalidades , Família , Feminino , Feto/patologia , Genômica , Genótipo , Cardiopatias Congênitas/genética , Humanos , Hidrocefalia/genética , Nefropatias/genética , Deformidades Congênitas dos Membros/genética , Masculino , Mutação , Fenótipo , Gravidez , Diagnóstico Pré-Natal/métodos , Coluna Vertebral/anormalidades , Natimorto/genética , Traqueia/anormalidades , Fístula Traqueoesofágica/genética , Anormalidades Urogenitais/genética , Sequenciamento do Exoma/métodos
11.
Hum Mol Genet ; 23(18): 4846-58, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24781210

RESUMO

Infantile spasms (IS) is an early-onset epileptic encephalopathy of unknown etiology in ∼40% of patients. We hypothesized that unexplained IS cases represent a large collection of rare single-gene disorders. We investigated 44 children with unexplained IS using comparative genomic hybridisation arrays (aCGH) (n = 44) followed by targeted sequencing of 35 known epilepsy genes (n = 8) or whole-exome sequencing (WES) of familial trios (n = 18) to search for rare inherited or de novo mutations. aCGH analysis revealed de novo variants in 7% of patients (n = 3/44), including a distal 16p11.2 duplication, a 15q11.1q13.1 tetrasomy and a 2q21.3-q22.2 deletion. Furthermore, it identified a pathogenic maternally inherited Xp11.2 duplication. Targeted sequencing was informative for ARX (n = 1/14) and STXBP1 (n = 1/8). In contrast, sequencing of a panel of 35 known epileptic encephalopathy genes (n = 8) did not identify further mutations. Finally, WES (n = 18) was very informative, with an excess of de novo mutations identified in genes predicted to be involved in neurodevelopmental processes and/or known to be intolerant to functional variations. Several pathogenic mutations were identified, including de novo mutations in STXBP1, CASK and ALG13, as well as recessive mutations in PNPO and ADSL, together explaining 28% of cases (5/18). In addition, WES identified 1-3 de novo variants in 64% of remaining probands, pointing to several interesting candidate genes. Our results indicate that IS are genetically heterogeneous with a major contribution of de novo mutations and that WES is significantly superior to targeted re-sequencing in identifying detrimental genetic variants involved in IS.


Assuntos
Cromossomos Humanos/genética , Mutação , Espasmos Infantis/genética , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Espasmos Infantis/patologia , Tetrassomia
12.
Calcif Tissue Int ; 98(1): 76-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26478226

RESUMO

Osteogenesis imperfecta (OI) type I is usually caused by COL1A1 stop or frameshift mutations, leading to COL1A1 haploinsufficiency. Here we report on 12 individuals from 5 families who had OI type I due to an unusual cause­heterozygous deletions of the entire COL1A1 gene. The deletions were initially detected by semiconductor-based sequencing of genomic DNA and confirmed by quantitative PCR. Array comparative genomic hybridization in DNA of the index patient in each family showed that deletion size varied from 18.5 kb to 2.23 Mb between families, encompassing between 1 and 47 genes (COL1A1 included). The skeletal phenotype of the affected individuals was similar to that of patients with haploinsufficiency caused by COL1A1 stop or frameshift mutations. However, one individual with a deletion that included also DLX3 and DLX4 had tooth discoloration and bone fragility. Three individuals from 2 families had deletions that included also CACNA1G, and these individuals had learning disabilities. These features are not usually observed in COL1A1 haploinsufficiency, but are in accordance with previously described individuals in whom deletions included the same genes. In summary, we found deletions of COL1A1 in 5 out of 161 families (3 %) with OI type I that were evaluated. Deletions encompassing not only COL1A1 but also neighboring genes can lead to contiguous gene syndromes that may include dental involvement and learning disability.


Assuntos
Colágeno Tipo I/genética , Deleção de Genes , Osteogênese Imperfeita/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cadeia alfa 1 do Colágeno Tipo I , Hibridização Genômica Comparativa , Família , Feminino , Humanos , Lactente , Masculino , Osteogênese Imperfeita/epidemiologia , Linhagem , Polimorfismo Genético , Adulto Jovem
13.
PLoS Genet ; 8(9): e1002903, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22969434

RESUMO

Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology.


Assuntos
Variações do Número de Cópias de DNA , Cardiopatias Congênitas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Família , Feminino , Coração/embriologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miocárdio/metabolismo , Neovascularização Fisiológica , Adulto Jovem
14.
Hum Genet ; 133(3): 321-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24154661

RESUMO

Beckwith-Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Cromossomos Humanos Par 11/genética , Variações do Número de Cópias de DNA/genética , Deleção Cromossômica , Cromossomos Humanos Par 4/genética , Hibridização Genômica Comparativa , Inibidor de Quinase Dependente de Ciclina p57/genética , Metilação de DNA , Feminino , Rearranjo Gênico , Impressão Genômica , Genótipo , Humanos , Masculino , Linhagem , Fenótipo
15.
Eur J Hum Genet ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914686

RESUMO

Haploinsufficiency of the short stature homeobox-containing (SHOX) gene leads to a phenotypic spectrum ranging from Leri-Weill dyschondrosteosis (LWD) to SHOX-deficient short stature. SHOX nullizygosity leads to Langer mesomelic dysplasia. Pathogenic variants can include whole or partial gene deletions or duplications, point mutations within the coding sequence, and deletions of upstream and downstream regulatory elements. Here we report two families: a non-consanguineous family with a deletion downstream of SHOX, in which the homozygous proband presented with isolated Madelung deformity, without LWD or short stature, as well as a 9-year-old girl with Madelung deformities, mesomelia, a dominant family history of Madelung deformity and a heterozygous deletion of the CNE9 region in the 3' downstream region of SHOX. These case reports provide additional information on the effects of 3' downstream deletions of SHOX, by demonstrating the limited phenotype associated with the recurrent 47.5 kb deletion in a homozygous state and the CNE9 deletion in a heterozygous state.

16.
J Med Genet ; 49(10): 636-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012439

RESUMO

BACKGROUND: Joubert syndrome (JBTS) is a predominantly autosomal recessive disorder characterised by a distinctive midhindbrain malformation, oculomotor apraxia, breathing abnormalities and developmental delay. JBTS is genetically heterogeneous, involving genes required for formation and function of non-motile cilia. Here we investigate the genetic basis of JBTS in 12 French-Canadian (FC) individuals. METHODS AND RESULTS: Exome sequencing in all subjects showed that six of them carried rare compound heterozygous mutations in CC2D2A or C5ORF42, known JBTS genes. In addition, three individuals (two families) were compound heterozygous for the same rare mutations in TMEM231(c.12T>A[p.Tyr4*]; c.625G>A[p.Asp209Asn]). All three subjects showed a severe neurological phenotype and variable presence of polydactyly, retinopathy and renal cysts. These mutations were not detected among 385 FC controls. TMEM231 has been previously shown to localise to the ciliary transition zone, and to interact with several JBTS gene products in a complex involved in the formation of the diffusion barrier between the cilia and plasma membrane. siRNA knockdown of TMEM231 was also shown to affect barrier integrity, resulting in a reduction of cilia formation and ciliary localisation of signalling receptors. CONCLUSIONS: Our data suggest that mutations in TMEM231 cause JBTS, reinforcing the relationship between this condition and the disruption of the barrier at the ciliary transition zone.


Assuntos
Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adolescente , Adulto , Sequência de Aminoácidos , Encéfalo/patologia , Canadá/etnologia , Doenças Cerebelares/diagnóstico , Cerebelo/anormalidades , Criança , Pré-Escolar , Exoma , Anormalidades do Olho/diagnóstico , Feminino , Ordem dos Genes , Humanos , Lactente , Doenças Renais Císticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Retina/anormalidades , Alinhamento de Sequência , Adulto Jovem
17.
Hum Mol Genet ; 18(12): 2149-65, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19321599

RESUMO

Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.


Assuntos
Cútis Laxa/metabolismo , Cútis Laxa/fisiopatologia , Vesículas Citoplasmáticas/metabolismo , Mutação , ATPases Translocadoras de Prótons/metabolismo , Tropoelastina/metabolismo , Sequência de Aminoácidos , Apoptose , Sobrevivência Celular , Células Cultivadas , Pré-Escolar , Estudos de Coortes , Cútis Laxa/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Transporte Proteico , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
18.
Am J Med Genet A ; 155A(11): 2705-12, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21964771

RESUMO

Isodicentric chromosomes are among the structural abnormalities of the Y chromosome that are commonly identified in patients. The simultaneous 45,X cell line that is generated in cell division due to instability of the isodicentric Y chromosome [idic(Y)] has long been hypothesized to explain the variable sexual development of these patients, although gonads have been studied in only a subset of cases. We report here on the molecular localization of breakpoints in ten patients with an idic(Y). Breakpoints were mapped by FISH using BACs; gonads and fibroblasts were also analyzed when possible to evaluate the level of mosaicism. First, we demonstrate great tissue variability in the distribution of idic(Y). Second, palindromes and direct repeats were near the breakpoint of several idic(Y), suggesting that these sequences play a role in the formation of idic(Y). Finally, our data suggest that intercentromeric distance has a negative influence on the stability of idic(Y), as a greater proportion of cells with breakage or loss of the idic(Y) were found in idic(Y) with a greater intercentromeric distance. Females had a significantly greater intercentromeric distance on their idic(Y) than did males. In conclusion, our study indicates that the Y chromosome contains sequences that are more prone to formation of isodicentric chromosomes. We also demonstrate that patients with an intercentromeric distance greater than 20 Mb on their idic(Y) are at increased risk of having a female sexual phenotype.


Assuntos
Centrômero/genética , Quebra Cromossômica , Cromossomos Humanos Y/genética , Mosaicismo , Aberrações dos Cromossomos Sexuais , Cariótipo Anormal , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Feminino , Disgenesia Gonadal/genética , Disgenesia Gonadal/patologia , Gônadas/patologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Metáfase , Fenótipo , Telômero/genética
19.
J Inherit Metab Dis ; 33 Suppl 3: S83-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20058079

RESUMO

Glycogen storage disease type IV (GSD IV; Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE), leading to excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues. The accumulated glycogen lacks multiple branch points and thus has longer outer branches and poor solubility, causing irreversible tissue and organ damage. Although classic GSD IV presents with early onset of hepatosplenomegaly with progressive liver cirrhosis, GSD IV exhibits extensive clinical heterogeneity with respect to age at onset and variability in pattern and extent of organ and tissue involvement. With the advent of cloning and determination of the genomic structure of the human GBE gene (GBE1), molecular analysis and characterization of underlying disease-causing mutations is now possible. A variety of disease-causing mutations have been identified in the GBE1 gene in GSD IV patients, many of whom presented with diverse clinical phenotypes. Detailed biochemical and genetic analyses of three unrelated patients suspected to have GSD IV are presented here. Two novel missense mutations (p.Met495Thr and p.Pro552Leu) and a novel 1-bp deletion mutation (c.1999delA) were identified. A variety of mutations in GBE1 have been previously reported, including missense and nonsense mutations, nucleotide deletions and insertions, and donor and acceptor splice-site mutations. Mutation analysis is useful in confirming the diagnosis of GSD IV--especially when higher residual GBE enzyme activity levels are seen and enzyme analysis is not definitive--and allows for further determination of potential genotype/phenotype correlations in this disease.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Mutação de Sentido Incorreto , Deleção de Sequência , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo IV/complicações , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Prognóstico , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA