Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413231

RESUMO

Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation ß power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation ß power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.


Assuntos
Percepção de Movimento , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Movimento , Percepção de Movimento/fisiologia
2.
PLoS Comput Biol ; 20(6): e1012209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870205

RESUMO

Balance impairments are common in cerebral palsy. When balance is perturbed by backward support surface translations, children with cerebral palsy have increased co-activation of the plantar flexors and tibialis anterior muscle as compared to typically developing children. However, it is unclear whether increased muscle co-activation is a compensation strategy to improve balance control or is a consequence of reduced reciprocal inhibition. During translational perturbations, increased joint stiffness due to co-activation might aid balance control by resisting movement of the body with respect to the feet. In contrast, during rotational perturbations, increased joint stiffness will hinder balance control as it couples body to platform rotation. Therefore, we expect increased muscle co-activation in response to rotational perturbations if co-activation is caused by reduced reciprocal inhibition but not if it is merely a compensation strategy. We perturbed standing balance by combined backward translational and toe-up rotational perturbations in 20 children with cerebral palsy and 20 typically developing children. Perturbations induced forward followed by backward movement of the center of mass. We evaluated reactive muscle activity and the relation between center of mass movement and reactive muscle activity using a linear feedback model based on center of mass kinematics. In typically developing children, perturbations induced plantar flexor balance correcting muscle activity followed by tibialis anterior balance correcting muscle activity, which was driven by center of mass movement. In children with cerebral palsy, the switch from plantar flexor to tibialis anterior activity was less pronounced than in typically developing children due to increased muscle co-activation of the plantar flexors and tibialis anterior throughout the response. Our results thus suggest that a reduction in reciprocal inhibition causes muscle co-activation in reactive standing balance in children with cerebral palsy.


Assuntos
Paralisia Cerebral , Músculo Esquelético , Equilíbrio Postural , Paralisia Cerebral/fisiopatologia , Humanos , Equilíbrio Postural/fisiologia , Criança , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Rotação , Eletromiografia , Biologia Computacional , Adolescente
3.
Allergy ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099205

RESUMO

The 4th Davos Declaration was developed during the Global Allergy Forum in Davos which aimed to elevate the care of patients with atopic dermatitis (AD) by uniting experts and stakeholders. The forum addressed the high prevalence of AD, with a strategic focus on advancing research, treatment, and management to meet the evolving challenges in the field. This multidisciplinary forum brought together top leaders from research, clinical practice, policy, and patient advocacy to discuss the critical aspects of AD, including neuroimmunology, environmental factors, comorbidities, and breakthroughs in prevention, diagnosis, and treatment. The discussions were geared towards fostering a collaborative approach to integrate these advancements into practical, patient-centric care. The forum underlined the mounting burden of AD, attributing it to significant environmental and lifestyle changes. It acknowledged the progress in understanding AD and in developing targeted therapies but recognized a gap in translating these innovations into clinical practice. Emphasis was placed on the need for enhanced awareness, education, and stakeholder engagement to address this gap effectively and to consider environmental and lifestyle factors in a comprehensive disease management strategy. The 4th Davos Declaration marks a significant milestone in the journey to improve care for people with AD. By promoting a holistic approach that combines research, education, and clinical application, the Forum sets a roadmap for stakeholders to collaborate to improve patient outcomes in AD, reflecting a commitment to adapt and respond to the dynamic challenges of AD in a changing world.

4.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411613

RESUMO

Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.


Assuntos
Epilepsia Resistente a Medicamentos , Neurônios , Animais , Camundongos , Células Piramidais , Encéfalo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
5.
Sci Rep ; 14(1): 3614, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351215

RESUMO

Physical human-robot interactions (pHRI) often provide mechanical force and power to aid walking without requiring voluntary effort from the human. Alternatively, principles of physical human-human interactions (pHHI) can inspire pHRI that aids walking by engaging human sensorimotor processes. We hypothesize that low-force pHHI can intuitively induce a person to alter their walking through haptic communication. In our experiment, an expert partner dancer influenced novice participants to alter step frequency solely through hand interactions. Without prior instruction, training, or knowledge of the expert's goal, novices decreased step frequency 29% and increased step frequency 18% based on low forces (< 20 N) at the hand. Power transfer at the hands was 3-700 × smaller than what is necessary to propel locomotion, suggesting that hand interactions did not mechanically constrain the novice's gait. Instead, the sign/direction of hand forces and power may communicate information about how to alter walking. Finally, the expert modulated her arm effective dynamics to match that of each novice, suggesting a bidirectional haptic communication strategy for pHRI that adapts to the human. Our results provide a framework for developing pHRI at the hand that may be applicable to assistive technology and physical rehabilitation, human-robot manufacturing, physical education, and recreation.


Assuntos
Robótica , Humanos , Feminino , Robótica/métodos , Marcha , Caminhada , Locomoção , Fenômenos Mecânicos
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1911): 20230485, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39155720

RESUMO

Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of ethnokinesiology aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection. We offer a first-level schema for generating and testing hypotheses about cultural differences in movement to bridge gaps between the rich observations of cross-cultural movement variations and neurophysiological and biomechanical accounts of movement. We explicitly dissociate two interacting feedback loops that determine culturally relevant movement: one governing sensorimotor tasks regulated by neural signals internal to the body, the other governing ecological tasks generated through actions in the environment producing ecological consequences. A key idea is the emergence of individual-specific and culturally influenced motor concepts in the nervous system, low-dimensional functional mappings between sensorimotor and ecological task spaces. Motor accents arise from perceived differences in motor concept topologies across cultural contexts. We apply the framework to three examples: speech, gait and grasp. Finally, we discuss how ethnokinesiological studies may inform personalized motor skill training and rehabilitation, and challenges moving forward.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.


Assuntos
Movimento , Humanos , Fenômenos Biomecânicos , Marcha , Fala/fisiologia , Força da Mão/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38526884

RESUMO

Joint hyper-resistance is a common symptom in neurological disorders. It has both neural and non-neural origins, but it has been challenging to distinguish different origins based on clinical tests alone. Combining instrumented tests with parameter identification based on a neuromechanical model may allow us to dissociate the different origins of joint hyper-resistance in individual patients. However, this requires that the model captures the underlying mechanisms. Here, we propose a neuromechanical model that, in contrast to previously proposed models, accounts for muscle short-range stiffness (SRS) and its interaction with muscle tone and reflex activity. We collected knee angle trajectories during the pendulum test in 15 children with cerebral palsy (CP) and 5 typically developing children. We did the test in two conditions - hold and pre-movement - that have been shown to alter knee movement. We modeled the lower leg as an inverted pendulum actuated by two antagonistic Hill-type muscles extended with SRS. Reflex activity was modeled as delayed, linear feedback from muscle force. We estimated neural and non-neural parameters by optimizing the fit between simulated and measured knee angle trajectories during the hold condition. The model could fit a wide range of knee angle trajectories in the hold condition. The model with personalized parameters predicted the effect of pre-movement demonstrating that the model captured the underlying mechanism and subject-specific deficits. Our model may help with the identification of neural and non-neural origins of joint hyper-resistance and thereby opens perspectives for improved diagnosis and treatment selection in children with spastic CP, but such applications require further studies to establish the method's reliability.


Assuntos
Paralisia Cerebral , Espasticidade Muscular , Criança , Humanos , Reprodutibilidade dos Testes , Movimento , Joelho , Músculo Esquelético/fisiologia
8.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746237

RESUMO

Understanding individuals' distinct movement patterns is crucial for health, rehabilitation, and sports. Recently, we developed a machine learning-based framework to show that "gait signatures" describing the neuromechanical dynamics governing able-bodied and post-stroke gait kinematics remain individual-specific across speeds. However, we only evaluated gait signatures within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint angles. Here we characterized changes in gait signatures across a wide range of speeds, from very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, joint moments, and powers) data would improve the discrimination of gait signatures. Our study showed that gait signatures remained individual-specific across walking speeds: Notably, 3D kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI): 99.1-100%) in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants exhibited consistent, predictable linear changes in their gait signatures across the entire speed range. These changes were associated with participants' preferred walking speeds, balance ability, cadence, and step length. These findings support gait signatures as a tool to characterize individual differences in gait and predict speed-induced changes in gait dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA