Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 19(4): e3001148, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844684

RESUMO

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.


Assuntos
Actinas/metabolismo , Multimerização Proteica , Sarcômeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/genética , Músculo Esquelético/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Sarcômeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismo
2.
PLoS Biol ; 16(9): e2006624, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30261040

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Molécula de Adesão da Célula Epitelial/química , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Ligantes , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Resultado do Tratamento
3.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321927

RESUMO

Testicans are modular proteoglycans of the extracellular matrix of various tissues where they contribute to matrix integrity and exert cellular effects like neurite outgrowth and cell migration. Using testican-2 as a representative member of the family, we tackle the complete lack of general structural information and structure-function relationship. First, we show using isothermal titration calorimetry and modeling that extracellular calcium-binding domain (EC) has only one active calcium-binding site, while the other potential site is inactive, and that testican-2 is within extracellular matrix always in the calcium-loaded form. Next, we demonstrate using various prediction methods that N- and C-terminal regions plus interdomain connections are flexible. We support this by small-angle X-ray-scattering analysis of C-terminally truncated testican-2, which indicates that the triplet follistatin-EC-thyroglobulin domain forms a moderately compact core while the unique N-terminal is disordered. Finally, using cell exclusion zone assay, we show that it is this domain triplet that is responsible for promoting cell migration and not the N- and C-terminal regions.


Assuntos
Movimento Celular , Proteoglicanas/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteoglicanas/metabolismo , Células Sf9 , Spodoptera
4.
Protein Expr Purif ; 157: 21-27, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703555

RESUMO

Cathepsin C is a tetrameric lysosomal protease that acts as a dipeptidyl-peptidase due to the presence of the exclusion domain that is unique among papain-like cysteine proteases. Here we describe a recombinant form of cathepsin C lacking its exclusion domain (CatCΔEx) produced in a bacterial expression system (E. coli). CatCΔEx is a monomer with endoprotease activity and affinity for hydrophobic residues such as Phe, Leu or Pro, but not Val, in the P2 position. As opposed to cathepsin C, it does not require chloride ions for its activity. Despite lower turnover rates of hydrolysis of synthetic substrates, CatCΔEx has elastolytic and gelatinolytic activity comparable to other cysteine cathepsins.


Assuntos
Catepsina C/metabolismo , Animais , Domínio Catalítico , Catepsina C/química , Catepsina C/genética , Bovinos , Colágeno/metabolismo , Elastina/metabolismo , Ativação Enzimática , Escherichia coli/genética , Gelatina/metabolismo , Humanos , Cinética , Modelos Moleculares , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 594-603, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040478

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.


Assuntos
Catepsina K/metabolismo , Quimiocina CXCL12/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neuroglia/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Benzilaminas , Catepsina K/genética , Linhagem Celular Tumoral , Quimiocina CXCL12/química , Quimiocina CXCL12/genética , Quimiotaxia , Ciclamos , Expressão Gênica , Compostos Heterocíclicos/farmacologia , Humanos , Células-Tronco Neoplásicas/patologia , Neuroglia/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteólise , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Nicho de Células-Tronco/genética
6.
J Biol Chem ; 290(40): 24574-91, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26292218

RESUMO

Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one ß-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aß-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and ß-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Aminoácidos/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Separação Celular , Endocitose , Molécula de Adesão da Célula Epitelial , Citometria de Fluxo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Multimerização Proteica , Estrutura Terciária de Proteína , Proteólise
7.
Arch Biochem Biophys ; 603: 110-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246477

RESUMO

The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development.


Assuntos
Cisteína Proteases/química , Proteínas de Plantas/química , Animais , Anticorpos Monoclonais/química , Sítios de Ligação , Catálise , Catepsina H/química , Catepsinas/química , Hidrólise , Insetos , Espectrometria de Massas , Papaína/química , Peptídeos/química , Ligação Proteica , Proteômica , Proteínas Recombinantes/química , Especificidade por Substrato , Nicotiana
8.
Acta Chim Slov ; 71(2): 256-263, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38919102

RESUMO

Breast cancer cell growth is often dependent on the presence of steroidal hormones. The 17ß-hydroxysteroid dehydrogenase type 1 isoform (17ßHSD1) catalyzes NADPH-dependent conversion of estrone to estradiol, a more potent estrogen, and represents potential drug target for breast cancer treatment.  To provide active enzyme for inhibitor screening, 17ßHSD1 is usually expressed in insect or mammalian cells, or isolated from human placenta. In the present study we describe a simple protocol for expression and purification of active human 17ßHSD1 from BL21(DE3) Escherichia coli cells. Soluble human 17ßHSD1 was expressed using a pET28a(+)-based plasmid, which encodes a hexahistidine tag fused to the N-terminus of the protein, and purified by nickel affinity chromatography. The enzyme activity of purified 17ßHSD1 was verified by three methods: thin-layer chromatography, an alkali assay and a spectroscopic assay. These non-radioactive enzyme assays require only standard laboratory equipment, and can be used for screening compounds that modulate 17ßHSD1 activity.


Assuntos
17-Hidroxiesteroide Desidrogenases , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , 17-Hidroxiesteroide Desidrogenases/isolamento & purificação , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/química , Cromatografia de Afinidade , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese
9.
Biol Chem ; 394(9): 1163-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23629523

RESUMO

Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation.


Assuntos
Catepsina K/química , Catepsina K/metabolismo , Animais , Cisteína/química , Cisteína/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos
10.
Protein Expr Purif ; 91(1): 69-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872121

RESUMO

Trop2 is a stem/progenitor cell marker, which is also upregulated in several human carcinomas. The largest part of the molecule, recognized by several monoclonal antibodies, is represented by the extracellular part (ectodomain) and is composed of three modules. The aim of our work was to prepare the ectodomain of Trop2 in quantities sufficient for structural and functional studies. We used the Spodoptera frugiperda (Sf9) insect cell expression system to prepare the Trop2 ectodomain (Trop2EC) in two forms - wt glycosylated (gTrop2EC) and mutant non-glycosylated form (Trop2EC(Δ/N)). Recombinant protein was purified from cell culture supernatants using two subsequent nickel ion-affinity chromatographies with a final yield of 15-17mg of purified recombinant protein per liter of culture. Size-exclusion chromatography together with MALS and chemical crosslinking were used to demonstrate for the first time that the Trop2 ectodomain forms a dimer. Both gTrop2EC and Trop2EC(Δ/N) exhibit similar biochemical properties, however the solubility of Trop2EC(Δ/N) is much lower (less than 1mg/ml). For the purpose of structural studies, we crystallized the glycosylated form gTrop2EC. The native dataset was collected with a resolution of 2.94Å and will be used in ongoing work for phasing and structure solution to further understand the role of Trop2 and the structure-function relation between Trop2 and the epithelial cell adhesion molecule (EpCAM).


Assuntos
Antígenos de Neoplasias/química , Moléculas de Adesão Celular/química , Proteínas Recombinantes/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Cristalização , Eletroforese em Gel de Poliacrilamida , Glicosilação , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9
11.
Bioorg Med Chem Lett ; 23(10): 2968-73, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562595

RESUMO

A small library of peptide amides was designed to profile the cathepsin L active site. Within the cathepsin family of cysteine proteases, the first round of selection was on cathepsin L and cathepsin B, and then selected hits were further evaluated for binding to cathepsin K and cathepsin S. Five highly selective sequences with submicromolar affinities towards cathepsin L were identified. An acyloxymethyl ketone warhead was then attached to these sequences. Although these original irreversible inhibitors inactivate cathepsin L, it appears that the nature of the warhead drastically impact the selectivity profile of the resulting covalent inhibitors.


Assuntos
Amidas/farmacologia , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Amidas/síntese química , Amidas/química , Domínio Catalítico/efeitos dos fármacos , Catepsina L/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Conformação Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
13.
Chembiochem ; 13(17): 2616-21, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23125066

RESUMO

Detecting the active forms of proteases by using activity-based probes in complex proteomes has become an intensively investigated field of research over the past years because many pathogenic conditions involve alterations in protease activities. The detection of lysosomal cysteine proteases, the cathepsins, has mostly relied on the use of probes that incorporate reactive electrophilic moieties to modify a cysteine in the active site covalently. Here we report the first example of an activity-based probe that targets the cathepsins and incorporates a photoactivatable benzophenone group for covalent labelling. When tested on a set of five cathepsins (B, K, L, S and V), this probe selectively labelled the active site of cathepsin L. Furthermore, when tested on crude cell extracts, the probe specifically detected cathepsin L quantities as low as a few picomoles. This study suggests that photoaffinity labelling is a promising approach for developing highly selective and useful cathepsin L probes. In particular, this probe might allow the detection of small amounts of the secreted active cathepsin L form in the cellular microenvironment in vitro and ex vivo.


Assuntos
Catepsina L/metabolismo , Ensaios Enzimáticos/métodos , Marcadores de Fotoafinidade/metabolismo , Benzofenonas/química , Domínio Catalítico , Catepsina L/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Marcadores de Fotoafinidade/química , Proteoma/metabolismo
14.
Protein Expr Purif ; 82(1): 1-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22100277

RESUMO

Cysteine cathepsins are major players in numerous physiologic and pathologic processes and important drug targets. Several different expression systems have been developed for the production of these enzymes. Here we describe a novel, simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins. Recombinant procathepsin V was expressed in soluble form in the cytoplasm of Escherichia coli and purified in one step by immobilized nickel ion-affinity chromatography, yielding approximately 0.7 mg procathepsin V per liter bacterial culture. The recombinant proenzyme was then autocatalytically activated in vitro by incubation at pH 4.0 and 30 °C. The yield of proenzyme conversion was over 95% and the mature enzyme exhibited potent activity towards several commonly used synthetic substrates. The same protocol also proved successful in the production of several other cysteine procathepsins, such as cathepsin B, demonstrating that this procedure is widely applicable for the production of recombinant papain-like cysteine peptidases.


Assuntos
Catepsinas/genética , Catepsinas/isolamento & purificação , Clonagem Molecular/métodos , Escherichia coli/genética , Catepsinas/química , Catepsinas/metabolismo , Expressão Gênica , Microbiologia Industrial/economia , Microbiologia Industrial/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solubilidade
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1363-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102232

RESUMO

The epithelial cell-adhesion molecule (EpCAM; CD326) is a transmembrane glycoprotein involved in epithelial cell-cell adhesion, cell proliferation and differentiation. Its elevated expression level in various carcinomas is exploited by several antitumour therapies that are at various stages of clinical development. The 35 kDa polypeptide chain of EpCAM is divided into a large extracellular part, a transmembrane helix and a short cytoplasmic tail. The modular extracellular part of human EpCAM was cloned and mutated to prevent N-linked glycosylation. After expression in insect cells and purification using standard chromatographic techniques, the extracellular part was crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 86.83, b = 50.16, c = 66.56 Å, ß = 127.9°. The crystal diffracted to 1.95 Å resolution and contained one molecule in the asymmetric unit.


Assuntos
Antígenos de Neoplasias/química , Moléculas de Adesão Celular/química , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Cristalização , Cristalografia por Raios X , Molécula de Adesão da Célula Epitelial , Expressão Gênica , Humanos
16.
Biochem J ; 429(2): 379-89, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20450492

RESUMO

The human cysteine peptidase cathepsin K is a key enzyme in bone homoeostasis and other physiological functions. In the present study we investigate the mechanism of cathepsin K action at physiological plasma pH and its regulation by modifiers that bind outside of the active site. We show that at physiological plasma pH the enzyme fluctuates between multiple conformations that are differently susceptible to macromolecular inhibitors and can be manipulated by varying the ionic strength of the medium. The behaviour of the enzyme in vitro can be described by the presence of two discrete conformations with distinctive kinetic properties and different susceptibility to inhibition by the substrate benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin. We identify and characterize sulfated glycosaminoglycans as natural allosteric modifiers of cathepsin K that exploit the conformational flexibility of the enzyme to regulate its activity and stability against autoproteolysis. All sulfated glycosaminoglycans act as non-essential activators in assays using low-molecular-mass substrates. Chondroitin sulfate and dermatan sulfate bind at one site on the enzyme, whereas heparin binds at an additional site and has a strongly stabilizing effect that is unique among human glycosaminoglycans. All glycosaminoglycans stimulate the elastinolytic activity of cathepsin K at physiological plasma pH, but only heparin also increases the collagenolytic activity of the enzyme under these conditions. Altogether these results provide novel insight into the mechanism of cathepsin K function at the molecular level and its regulation in the extracellular space.


Assuntos
Catepsina K/química , Catepsina K/metabolismo , Regulação Alostérica , Animais , Catepsina K/antagonistas & inibidores , Catepsina K/sangue , Bovinos , Colágeno/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/fisiologia , Elastina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato , Triptofano/química
17.
Cells ; 9(6)2020 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486423

RESUMO

EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell-cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.


Assuntos
Molécula de Adesão da Célula Epitelial/química , Animais , Doença , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Modelos Moleculares , Multimerização Proteica , Proteólise , Transdução de Sinais
18.
Acta Chim Slov ; 66(1): 58-61, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33855476

RESUMO

Cysteine cathepsins are peptidases with housekeeping functions that play different specific roles in different tissues. Endogenous peptidase inhibitors, such as cystatins and thyropins are the ultimate way of controlling their activity. It appears, however, that cathepsin X, a monocarboxypeptidase, whose overexpression is associated with several pathological processes, is not under the control of endogenous inhibitors. Inhibitors belonging to various groups inhibit other cathepsins tested, but none decrease the carboxypeptidase activity of cathepsin X. This absence of inhibitor control is another feature that distinguishes cathepsin X from other members of the cysteine peptidases.

19.
Protein Expr Purif ; 62(1): 75-82, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18708147

RESUMO

Secreted modular calcium-binding (SMOC) proteins are little known members of the BM-40 family of matricellular proteins. SMOC-1 is localized in basement membranes, while SMOC-2 exhibits pro-angiogenic properties and stimulates cell cycle progression via integrin-linked kinase. In this work we have expressed recombinant human SMOCs in inclusion bodies in Escherichia coli. Soluble proteins were prepared by in vitro refolding with a final yield of approximately 3mg of purified SMOCs per liter of bacterial culture. The folding state of the products and their ability to reversibly bind calcium ions were verified by CD spectroscopy. The EF hands of the refolded SMOCs were both functional, one had high affinity for calcium ions (K(d) values in the 0.7-1 microM range), while the other had lower affinity (K(d) values 20-25 microM). The proteins were also examined for their ability to bind blood serum proteins. Three of the bands specifically retained on SMOC-Sepharose were identified as C-reactive protein, an acute phase protein from the pentraxin family, the basement membrane and elastic fiber-associated fibulin-1, and vitronectin, which is involved in cell adhesion, migration and proliferation and binds numerous extracellular and membrane proteins, including integrins. The interactions were additionally confirmed in solution using purified individual proteins by the method of biotin label transfer from one interacting partner to the other. Their identification is among the first pieces of information about the action of the SMOCs on molecular level and opens new possibilities for future research aimed towards elucidating the physiological roles of these versatile proteins.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteína C-Reativa/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Osteonectina/biossíntese , Proteínas Recombinantes/biossíntese , Sítios de Ligação , Proteínas Sanguíneas/química , Proteína C-Reativa/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Dicroísmo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Osteonectina/química , Osteonectina/genética , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Sci Rep ; 8(1): 13269, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185875

RESUMO

Cell-surface tumor marker EpCAM plays a key role in proliferation, differentiation and adhesion processes in stem and epithelial cells. It is established as a cell-cell adhesion molecule, forming intercellular interactions through homophilic association. However, the mechanism by which such interactions arise has not yet been fully elucidated. Here, we first show that EpCAM monomers do not associate into oligomers that would resemble an inter-cellular homo-oligomer, capable of mediating cell-cell adhesion, by using SAXS, XL-MS and bead aggregation assays. Second, we also show that EpCAM forms stable dimers on the surface of a cell with pre-formed cell-cell contacts using FLIM-FRET; however, no inter-cellular homo-oligomers were detectable. Thus, our study provides clear evidence that EpCAM indeed does not function as a homophilic cell adhesion molecule and therefore calls for a significant revision of its role in both normal and cancerous tissues. In the light of this, we strongly support the previously suggested name Epithelial Cell Activating Molecule instead of the Epithelial Cell Adhesion Molecule.


Assuntos
Adesão Celular/fisiologia , Molécula de Adesão da Célula Epitelial/química , Molécula de Adesão da Célula Epitelial/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Molécula de Adesão da Célula Epitelial/biossíntese , Molécula de Adesão da Célula Epitelial/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Transdução de Sinais , Spodoptera/genética , Spodoptera/metabolismo , Relação Estrutura-Atividade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA