Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445675

RESUMO

MTTA, also known as mephtetramine, is a stimulant novel psychoactive substance characterized by a simil-cathinonic structure. To date, little has been studied on its pharmaco-toxicological profile, and its genotoxic potential has never been assessed. In order to fill this gap, the aim of the present work was to evaluate its genotoxicity on TK6 cells in terms of its ability to induce structural and numerical chromosomal aberrations by means of a cytofluorimetric protocol of the "In Vitro Mammalian Cell Micronucleus (MN) test". To consider the in vitro effects of both the parental compound and the related metabolites, TK6 cells were treated with MTTA in the absence or presence of an exogenous metabolic activation system (S9 mix) for a short-term time (3 h) followed by a recovery period (23 h). No statistically significant increase in the MNi frequency was detected. Specifically, in the presence of S9 mix, only a slight increasing trend was observable at all tested concentrations, whereas, without S9 mix, at 75 µM, almost a doubling of the negative control was reached. For the purposes of comprehensive evaluation, a long-term treatment (26 h) was also included. In this case, a statistically significant enhancement in the MNi frequency was observed at 50 µM.


Assuntos
Dano ao DNA , Mutagênicos , Animais , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Fármacos do Sistema Nervoso Central , Testes de Mutagenicidade/métodos , Mamíferos/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628658

RESUMO

The novel psychoactive substance (NPS) 4-Methyl-5-(4-methylphenyl)-4,5-dihydroxazol-2-amine (4,4'-DMAR) shows psychostimulant activity. Data on the acute toxicity of 4,4'-DMAR are becoming increasingly available, yet the long-term effects are still almost unknown. In particular, no data on genotoxicity are available. Therefore, the aim of the present study was to evaluate its genotoxic potential using the "In Vitro Mammalian Cell Micronucleus Test" (MNvit) on (±)cis-4,4'-DMAR and (±)trans-4,4'-DMAR and their associations. The analyses were conducted in vitro on human TK6 cells. To select suitable concentrations for MNvit, we preliminarily evaluated cytotoxicity and apoptosis. All endpoints were analysed by flow cytometry. The results reveal the two racemates' opposite behaviours: (±)cis-4,4'-DMAR shows a statistically significant increase in micronuclei (MNi) frequency that (±)trans-4,4'-DMAR is completely incapable of. This contrast confirms the well-known possibility of observing opposite biological effects of the cis- and trans- isomers of a compound, and it highlights the importance of testing single NPSs that show even small differences in structure or conformation. The genotoxic capacity demonstrated stresses an additional alarming toxicological concern related to this NPS. Moreover, the co-treatments indicate that consuming both racemates will magnify the genotoxic effect, an aspect to consider given the unpredictability of illicit drug composition.


Assuntos
Estimulantes do Sistema Nervoso Central , Drogas Ilícitas , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Humanos , Drogas Ilícitas/farmacologia , Isomerismo , Mamíferos , Oxazóis/farmacologia
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430883

RESUMO

Three fentanyl analogues Acrylfentanyl, Ocfentanyl and Furanylfentanyl are potent, rapid-acting synthetic analgesics that recently appeared on the illicit market of new psychoactive substances (NPS) under the class of new synthetic opioids (NSO). Pharmacotoxicological data on these three non-pharmaceutical fentanyl analogues are limited and studies on their genotoxicity are not yet available. Therefore, the aim of the present study was to investigate this property. The ability to induce structural and numerical chromosomal aberrations in human lymphoblastoid TK6 cells was evaluated by employing the flow cytometric protocol of the in vitro mammalian cell micronucleus test. Our study demonstrated the non-genotoxicity of Fentanyl, i.e., the pharmaceutical progenitor of the class, while its illicit non-pharmaceutical analogues were found to be genotoxic. In particular, Acrylfentanyl led to a statistically significant increase in the MNi frequency at the highest concentration tested (75 µM), while Ocfentanyl and Furanylfentnyl each did so at both concentrations tested (150, 200 µM and 25, 50 µM, respectively). The study ended by investigating reactive oxygen species (ROS) induction as a possible mechanism linked to the proved genotoxic effect. The results showed a non-statistically significant increase in ROS levels in the cultures treated with all molecules under study. Overall, the proved genotoxicity raises concern about the possibility of serious long-term consequences.


Assuntos
Dano ao DNA , Fentanila , Humanos , Espécies Reativas de Oxigênio , Fentanila/toxicidade
4.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204826

RESUMO

Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35-100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.


Assuntos
Alcaloides/toxicidade , Metanfetamina/análogos & derivados , Mutagênicos/toxicidade , Pentanonas/toxicidade , Pirrolidinas/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metanfetamina/toxicidade , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050487

RESUMO

Novel Psychoactive Substances (NPS) include several classes of substances such as synthetic cannabinoids (SCBs), an emerging alternative to marijuana, easily purchasable on internet. SCBs are more dangerous than Δ9-Tetrahydrocannabinol as a consequence of their stronger affinities for the CB1 and CB2 receptors, which may result in longer duration of distinct effects, greater potency, and toxicity. The information on SCBs cytotoxicity, genotoxicity, mutagenicity, and long-term effects is scarce. This fact suggests the urgent need to increase available data and to investigate if some SCBs have an impact on the stability of genetic material. Therefore, the aim of the present study was the evaluation of the mutagenic effect of different SCBs belonging to indole- and indazole-structures. The analyzes were conducted in vitro on human TK6 cells and mutagenicity were measured as micronucleus fold increase by flow cytometry. Our results have highlighted, for the first time, the mutagenic capacity of four SCBs, in particular in terms of chromosomal damage induction. We underline the serious potential toxicity of SCBs that suggests the need to proceed with the studies of other different synthetic compounds. Moreover, we identified a method that allows a rapid but effective screening of NPS placed on the market increasingly faster.


Assuntos
Canabinoides/toxicidade , Mutagênicos/toxicidade , Psicotrópicos/toxicidade , Canabinoides/química , Linhagem Celular , Citometria de Fluxo , Humanos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/química , Psicotrópicos/química
6.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348640

RESUMO

Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25-35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still "safe" doses could run into genotoxicity and in the well-known long-term effects associated.


Assuntos
Anisóis/farmacologia , Dimetoxifeniletilamina/análogos & derivados , Genes/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Fenetilaminas/farmacologia , Psicotrópicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dimetoxifeniletilamina/farmacologia , Citometria de Fluxo/métodos , Alucinógenos/farmacologia , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
8.
BMC Complement Altern Med ; 18(1): 300, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419892

RESUMO

BACKGROUND: The interest towards botanicals and plant extracts has strongly risen due to their numerous biological effects and ability to counteract chronic diseases development. Among these effects, chemoprevention which represents the possibility to counteract the cancerogenetic process is one of the most studied. The extracts of mushroom Meripilus giganteus (MG) (Phylum of Basidiomycota) showed to exert antimicrobic, antioxidant and antiproliferative effects. Therefore, since its effect in leukemic cell lines has not been previously evaluated, we studied its potential chemopreventive effect in Jurkat and HL-60 cell lines. METHODS: MG ethanolic extract was characterized for its antioxidant activity and scavenging effect against different radical species. Moreover, its phenolic profile was evaluated by HPLC-MS-MS analyses. Flow cytometry (FCM) analyses of Jurkat and HL-60 cells treated with MG extract (0-750 µg/mL) for 24-72 h- allowed to evaluate its cytotoxicity, pro-apoptotic and anti-proliferative effect. To better characterize MG pro-apoptotic mechanism ROS intracellular level and the gene expression level of FAS, BAX and BCL2 were also evaluated. Moreover, to assess MG extract selectivity towards cancer cells, its cytotoxicity was also evaluated in human peripheral blood lymphocytes (PBL). RESULTS: MG extract induced apoptosis in Jurkat and HL-60 cells in a dose- and time- dependent manner by increasing BAX/BCL2 ratio, reducing ROS intracellular level and inducing FAS gene expression level. In fact, reduced ROS level is known to be related to the activation of apoptosis in leukemic cells by the involvement of death receptors. MG extract also induced cell-cycle arrest in HL-60 cells. Moreover, IC50 at 24 h treatment resulted 2 times higher in PBL than in leukemic cell lines. CONCLUSIONS: Our data suggest that MG extract might be considered a promising and partially selective chemopreventive agent since it is able to modulate different mechanisms in transformed cells at concentrations lower than in non-transformed ones.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Polyporales/química , Antineoplásicos/farmacologia , Etanol , Células HL-60 , Humanos , Células Jurkat , Leucemia
9.
BMC Complement Altern Med ; 17(1): 251, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476162

RESUMO

BACKGROUND: Chemoprevention represents the possibility to prevent, stop or reverse the cancerogenetic process. In this context the interest towards natural extracts and botanical drugs has constantly grown due to their phytochemical content. Castanea sativa Mill. (CSM) extracts showed to exert positive effect in the prevention/counteraction of chronic/degenerative diseases, therefore, we evaluated the potential chemopreventive effect of CSM bark extract. METHODS: Flow cytometry (FCM) analyses of Jurkat cells treated with CSM bark extract (0-500 µg·mL-1) for 24-72 h allowed evaluating its cytotoxicity and ability to induce apoptosis through the intrinsic or extrinsic pathways. Moreover, to evaluate CSM bark extract selectivity towards cancer cells, its cytotoxic and pro-apoptotic effect was also evaluated in human peripheral blood lymphocytes (PBL). RESULTS: CSM bark extract induced apoptosis in Jurkat cells in a dose- and time- dependent manner activating the extrinsic pathways as evidenced by the increase of activated caspase-8 positive cells. Moreover, IC50 calculated after 24 h treatment resulted 304 and 128 µg·mL-1 in PBL and Jurkat cells respectively. CONCLUSIONS: Our data suggest that CSM bark extract might be considered an interesting potential anti-cancer agent, since it induces apoptosis in cancer cells without appreciable cytotoxic effects on non-transformed cells.


Assuntos
Apoptose/efeitos dos fármacos , Fagaceae/química , Neoplasias/prevenção & controle , Casca de Planta/química , Extratos Vegetais/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Humanos , Células Jurkat , Neoplasias/enzimologia , Neoplasias/genética
10.
Cancer Treat Res ; 159: 207-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24114482

RESUMO

Cancer is a complex disease characterized by multiple genetic and molecular alterations involving transformation, deregulation of apoptosis, proliferation, invasion, angiogenesis, and metastasis. To grow, invade, and metastasize, tumors need host components and primary dysfunction in the tumor microenvironment, in addition to cell dysfunction, can be crucial for carcinogenesis. A great variety of phytochemicals have been shown to be potentially capable of inhibiting and modulating several relevant targets simultaneously and is therefore non-specific. Because of the enormous biological diversity of cancer, this pleiotropism might constitute an advantage. Phytochemicals, in particular diet-derived compounds, have therefore been proposed and applied in clinical trials as cancer chemopreventive/chemotherapeutic agents. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables. SFN has proved to be an effective chemoprotective agent in cell culture, in carcinogen-induced and genetic animal cancer models, as well as in xenograft models of cancer. It promoted potent cytostatic and cytotoxic effects orchestrated by the modulation of different molecular targets. Cell vulnerability to SFN-mediated apoptosis was subject to regulation by cell-cycle-dependent mechanisms but was independent of a mutated p53 status. Moreover, combination of SFN with cytotoxic therapy potentiated the cytotoxic effect mediated by chemotherapy in vitro, thus suggesting its potential therapeutic benefit in clinical settings. Overall, SFN appears to be an effective and safe chemopreventive molecule and a promising tool to fight cancer.


Assuntos
Anticarcinógenos/uso terapêutico , Isotiocianatos/uso terapêutico , Neoplasias/prevenção & controle , Animais , Humanos , Sulfóxidos
11.
Pharmaceutics ; 15(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896225

RESUMO

Castanea sativa Mill. (Cs), a plant traditionally employed in nutrition and to treat various respiratory and gastrointestinal infections, possesses cancer chemopreventive characteristics. In particular, Cs bark extract previously demonstrated antiproliferative and pro-apoptotic activities against a leukemic lymphoblastic cell line. Starting from this evidence, the aim of this paper was to investigate the possibility to affect also the earlier phases of the carcinogenic process by evaluating Cs bark extract's antimutagenic properties, in particular using the "In Vitro Mammalian Cell Micronucleus Test" on TK6 cells performed by flow cytometry. For this purpose, since an ideal chemopreventive agent should be virtually nontoxic, the first step was to exclude the extract's genotoxicity. Afterwards, the antimutagenic effect of the extract was evaluated against two known mutagens, the clastogen mitomycin C (MMC) and the aneugen vinblastine (VINB). Our results indicate that Cs bark extract protected cells from MMC-induced damage (micronuclei frequency fold increase reduction from 2.9 to 1.8) but not from VINB. Moreover, we demonstrated that Cs bark extract was a strong antioxidant and significantly reduced MMC-induced ROS levels by over 2 fold. Overall, our research supports the assumption that Cs bark extract can counteract MMC mutagenicity by possibly scavenging ROS production.

12.
Pharmaceutics ; 15(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839972

RESUMO

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is also expressed in neurons, skin melanocytes, and peripheral nerve fibers. Immunotherapy with monoclonal anti-GD2 antibodies has a proven efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. However, the strong neuro-toxicity associated with anti-GD2 antibodies administration has hindered, until now, the possibility for dose-escalation and protracted use, thus restraining their therapeutic potential. Strategies to increase the efficacy of anti-GD2 antibodies are actively sought, with the aim to enable chronic treatments that could eradicate minimal residual disease and subsequent relapses, often occurring after treatment. Here, we report that Nanofenretinide and Nanospermidine improved the expression of GD2 in neuroblastoma cells (CHP-134) and provided different effects in combination with the anti-GD2 antibody naxitamab. In particular, Nanofenretinide significantly increased the cytotoxic effect of naxitamab while Nanospermidine inhibited cell motility at extents proportional to naxitamab concentration. In neuroblastoma cells characterized by a low and heterogeneous basal expression of GD2, such as SH-SY5Y, which may represent the cell heterogeneity in tumors after chemotherapy, both Nanofenretinide and Nanospermidine increased GD2 expression in approximately 50% of cells, thus shifting the tumor population towards improved sensitivity to anti-GD2 antibodies.

13.
Mutat Res ; 750(2): 107-131, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22178957

RESUMO

Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.


Assuntos
Isotiocianatos/toxicidade , Isotiocianatos/uso terapêutico , Antioxidantes/uso terapêutico , Quimioprevenção , Humanos , Mutagênicos/toxicidade
14.
Toxics ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35324767

RESUMO

A genotoxicological study was carried out on a substance-based medical device (SMD) containing anthraquinones in order to evaluate its potential mutagenic effect. The "In Vitro Mammalian Cell Micronucleus Test" was performed on human TK6 cells by flow cytometry. Cultures were treated with concentrations of SMD tested in the range of 0-2 mg/mL for short treatment time (3 h) both in the absence and presence of an exogenous metabolic activation system, followed by a recovery period in fresh medium (23 h) and for extended treatment time (26 h) without an exogenous metabolic activation system. At the end of both treatment times, cytotoxicity, cytostasis, apoptosis and micronuclei (MNi) frequency were analysed in treated cultures and then compared with those measured in concurrent negative control cultures. The SMD did not induce a statistically significant increase MNi frequency under any of experimental conditions tested. The negative outcome shows that the SMD is non-mutagenic in terms of its ability to induce chromosomal aberrations both in the absence and presence of an exogenous metabolic activation system. The study ended by analyzing intracellular ROS levels to exclude the pro-oxidant ability, typically linked to DNA damage. On the contrary, our results demonstrated the ability the SMD to counteract oxidative stress.

15.
Biomolecules ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291694

RESUMO

Autophagy is a fundamental catabolic process of cellular survival. The role of autophagy in cancer is highly complex: in the early stages of neoplastic transformation, it can act as a tumor suppressor avoiding the accumulation of proteins, damaged organelles, and reactive oxygen species (ROS), while during the advanced stages of cancer, autophagy is exploited by cancer cells to survive under starvation. 6-(Methylsulfonyl) hexyl isothiocyanate (6-MITC) is the most interesting compound in the Wasabia Japonica rizhome. Recently, we proved its ability to induce cytotoxic, cytostatic, and cell differentiation effects on leukemic cell lines and its antimutagenic activity on TK6 cells. In the current study, to further define its chemopreventive profile, Jurkat and HL-60 cells were treated with 6-MITC for 24 h. The modulation of the autophagic process and the involvement of ROS levels as a possible trigger mechanisms were analyzed by flow cytometry. We found that 6-MITC induced autophagy in Jurkat and HL-60 cells at the highest concentration tested and increased ROS intracellular levels in a dose-dependent manner. Our results implement available data to support 6-MITC as an attractive potential chemopreventive agent.


Assuntos
Citostáticos , Leucemia , Humanos , Espécies Reativas de Oxigênio , Citostáticos/farmacologia , Isotiocianatos/farmacologia , Leucemia/tratamento farmacológico , Autofagia , Células HL-60 , Apoptose , Linhagem Celular Tumoral
16.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36558942

RESUMO

Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.

17.
Mutat Res ; 689(1-2): 65-73, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20510253

RESUMO

Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 microM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of SFR in anticancer drug protocols.


Assuntos
Anticarcinógenos/toxicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiocianatos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quebras de DNA de Cadeia Simples , Humanos , Isotiocianatos , Células Jurkat , Sulfóxidos
18.
Front Pharmacol ; 11: 1242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973500

RESUMO

6-(methylsulfinyl) hexyl isothiocyanate (6-MITC), is the main bioactive compound present in Wasabia japonica rhizome. Several scientific studies have shown that 6-MITC possesses interesting antimicrobial, anti-inflammatory, antiplatelet and antioxidant properties which therefore suggested us it could have an interesting chemopreventive potential. In a recent publication, we demonstrated, in two different leukemia cell lines, its ability to modulate several mechanisms supporting its antitumor activity. For this reason, we thought useful to continue the research, by investigating the potential antimutagenic activity of 6-MITC and thus better define its profile as a possible chemopreventive agent. 6-MITC antimutagenic effect against two known mutagenic agents: the clastogen Mitomycin C (MMC) and the aneuplodogen Vinblastine (VINB), was analyzed, in terms of micronuclei frequency decrease, after short- and long- time treatment on TK6 human cells, using a new automated protocol of the "In Vitro Mammalian Cell Micronucleous Test" by flow cytometry. The results showed a different behavior of the isothiocyante. In particular, 6-MITC was unable to counteract the MMC genotoxicity, but when it was associated with VINB a statistically significant decrease in the micronuclei frequency was registered. Overall, the results obtained suggest a potential antimutagenic activity of 6-MITC, in particular against the aneuploidogen agents. This ability, to inhibit or counteract the mutations at the cellular level has a great therapeutic value and it represents a mechanism through a chemopreventive agent can express its activity.

19.
Geroscience ; 42(3): 867-879, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31098949

RESUMO

Cellular senescence is a fundamental process that may play positive or detrimental roles for the organism. It is involved in tissue development and in tumor prevention although during aging is becoming a detrimental process contributing to the decline of tissue functions. In previous investigations, we have uncovered a better capacity to detect DNA damage in cells from long-lived mammals. Here, we report that cultured cells derived from long-lived species have a higher propensity to undergo senescence when challenged with DNA damage than cells derived from short-lived species. Using a panel of cells derived from six mammals, which range in lifespan from 3-4 years up to 120 years, we examined cell cycle response, induction of apoptosis and of cellular senescence. All species exhibited a cell cycle arrest while induction of apoptosis was variable. However, a significant positive correlation was found between the relative percent of cells, within a population which entered senescence following damage, and the lifespan of the species. We suggest that cellular senescence may have a positive role during development allowing it to contribute to the evolution of longevity.


Assuntos
Senescência Celular , Longevidade , Envelhecimento , Animais , Dano ao DNA , beta-Galactosidase
20.
Mutat Res ; 670(1-2): 59-67, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19631670

RESUMO

It is well documented that damage to DNA could be very harmful for all cells and is the source of several consequences such as cancer development, apoptosis or genetic diseases. In contrast, RNA damage is a poorly examined field in biomedical research, despite its potential to affect cell physiology. For example, a significant loss of RNA integrity has been demonstrated in advanced human atherosclerotic plaques as compared with non-atherosclerotic mammary arteries, and oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease. In the present study, we investigated whether RNA damage could be related to the exposure of particular xenobiotics and then we studied the potential protective activity of creatine against RNA-damaging activity of a series of chemicals with different mechanisms of action [ethyl methanesulfonate (EMS), H(2)O(2), doxorubicin, spermine NONOate, S-nitroso-N-acetylpenicillamine (SNAP)]. Since the protective effect against RNA damage can be mediated by different mechanisms, such as alterations of the rates of toxic agent absorption and uptake, trapping of electrophiles as well as free radicals, and protection of nucleophilic sites in RNA, we used two different treatment protocols (pre- and co-treatment) for understanding the mechanism of the inhibitory activity of creatine. We demonstrated that total RNA is susceptible to chemical attack by doxorubicin, H(2)O(2), spermine and SNAP. Creatine significantly reduced the RNA-damaging activity of only two of the toxic tested agents (H(2)O(2) and doxorubicin), while it lacked activity in counterstaining the RNA damage induced by the NO donors spermine and SNAP. Its inhibitory activity could be at least partially dependent on its capacity to directly scavenge free radicals and/or to maintain phosphocreatine store and ATP regeneration.


Assuntos
Creatina/farmacologia , Linfócitos/efeitos dos fármacos , RNA/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/toxicidade , Antagonismo de Drogas , Humanos , Peróxido de Hidrogênio/toxicidade , Mutagênicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA