Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell Proteomics ; 18(4): 686-703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659065

RESUMO

Antibodies are critical glycoproteins that bridge the innate and adaptive immune systems to provide protection against infection. The isotype/subclass of the antibody, the co-translational N-glycosylation on the CH2 domain, and the remodeling of the N-linked glycans during passage through the ER and Golgi are the known variables within the Fc domain that program antibody effector function. Through investigations of monoclonal therapeutics, it has been observed that addition or removal of specific monosaccharide residues from antibody N-glycans can influence the potency of antibodies, highlighting the importance of thoroughly characterizing antibody N-glycosylation. Although IgGs usually have a single N-glycosylation site and are well studied, other antibody isotypes, e.g. IgA and IgM, that are the first responders in certain diseases, have two to five sites/monomer of antibody, and little is known about their N-glycosylation. Here we employ a nLC-MS/MS method using stepped-energy higher energy collisional dissociation to characterize the N-glycan repertoire and site occupancy of circulating serum antibodies. We simultaneously determined the site-specific N-linked glycan repertoire for IgG1, IgG4, IgA1, IgA2, and IgM in individual healthy donors. Compared with IgG1, IgG4 displayed a higher relative abundance of G1S1F and a lower relative abundance of G1FB. IgA1 and IgA2 displayed mostly biantennary N-glycans. IgA2 variants with the either serine (S93) or proline (P93) were detected. In digests of the sera from a subset of donors, we detected an unmodified peptide containing a proline residue at position 93; this substitution would strongly disfavor N-glycosylation at N92. IgM sites N46, N209, and N272 displayed mostly complex glycans, whereas sites N279 and N439 displayed higher relative abundances of high-mannose glycoforms. This multi-isotype approach is a crucial step toward developing a platform to define disease-specific N-glycan signatures for different isotypes to help tune antibodies to induce protection. Data are available via ProteomeXchange with identifier PXD010911.


Assuntos
Glicoproteínas/sangue , Cadeias Pesadas de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/sangue , Proteômica , Sequência de Aminoácidos , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Cadeias Pesadas de Imunoglobulinas/química
2.
J Biol Chem ; 294(35): 13117-13130, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308178

RESUMO

The tumor microenvironment and proinflammatory signals significantly alter glycosylation of cell-surface proteins on endothelial cells. By altering the N-glycosylation machinery in the endoplasmic reticulum and Golgi, proinflammatory cytokines promote the modification of endothelial glycoproteins such as vascular endothelial growth factor receptor 2 (VEGFR2) with sialic acid-capped N-glycans. VEGFR2 is a highly N-glycosylated receptor tyrosine kinase involved in pro-angiogenic signaling in physiological and pathological contexts, including cancer. Here, using glycoside hydrolase and kinase assays and immunoprecipitation and MS-based analyses, we demonstrate that N-linked glycans at the Asn-247 site in VEGFR2 hinder VEGF ligand-mediated receptor activation and signaling in endothelial cells. We provide evidence that cell surface-associated VEGFR2 displays sialylated N-glycans at Asn-247 and, in contrast, that the nearby sites Asn-145 and Asn-160 contain lower levels of sialylated N-glycans and higher levels of high-mannose N-glycans, respectively. Furthermore, we report that VEGFR2 Asn-247-linked glycans capped with sialic acid oppose ligand-mediated VEGFR2 activation, whereas the uncapped asialo-glycans favor activation of this receptor. We propose that N-glycosylation, specifically the capping of N-glycans at Asn-247 by sialic acid, tunes ligand-dependent activation and signaling of VEGFR2 in endothelial cells.


Assuntos
Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Glicosilação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligantes , Polissacarídeos/química , Polissacarídeos/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
3.
J Biol Chem ; 294(6): 1967-1983, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30538131

RESUMO

Toxoplasma gondii is an intracellular parasite that causes disseminated infections that can produce neurological damage in fetuses and immunocompromised individuals. Microneme protein 2 (MIC2), a member of the thrombospondin-related anonymous protein (TRAP) family, is a secreted protein important for T. gondii motility, host cell attachment, invasion, and egress. MIC2 contains six thrombospondin type I repeats (TSRs) that are modified by C-mannose and O-fucose in Plasmodium spp. and mammals. Here, using MS analysis, we found that the four TSRs in T. gondii MIC2 with protein O-fucosyltransferase 2 (POFUT2) acceptor sites are modified by a dHexHex disaccharide, whereas Trp residues within three TSRs are also modified with C-mannose. Disruption of genes encoding either POFUT2 or the putative GDP-fucose transporter (NST2) resulted in loss of MIC2 O-fucosylation, as detected by an antibody against the GlcFuc disaccharide, and in markedly reduced cellular levels of MIC2. Furthermore, in 10-15% of the Δpofut2 or Δnst2 vacuoles, MIC2 accumulated earlier in the secretory pathway rather than localizing to micronemes. Dissemination of tachyzoites in human foreskin fibroblasts was reduced for these knockouts, which both exhibited defects in attachment to and invasion of host cells comparable with the Δmic2 phenotype. These results, indicating that O-fucosylation of TSRs is required for efficient processing of MIC2 and for normal parasite invasion, are consistent with the recent demonstration that Plasmodium falciparum Δpofut2 strain has decreased virulence and also support a conserved role for this glycosylation pathway in quality control of TSR-containing proteins in eukaryotes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fucosiltransferases/metabolismo , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Moléculas de Adesão Celular/genética , Fucose/genética , Fucose/metabolismo , Fucosiltransferases/genética , Glicosilação , Humanos , Proteínas de Protozoários/genética , Sequências Repetitivas de Aminoácidos , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
4.
Mol Cell Proteomics ; 17(9): 1778-1787, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29915149

RESUMO

Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy. Significantly, all primary AAV receptors of the virus are glycans. We thus hypothesize that age related changes in glycan receptors of heparan sulfate (HS) proteoglycans (receptor for rAAV2), and/or N-glycans with terminal galactose (receptor for rAAV9) results in poor adeno-associated virus binding in either the striatum or substantia nigra, or both, affecting transduction and gene delivery. To test our hypothesis we analyzed the striatum and substantia nigra for changes in HS, N-glycans and proteomic signatures in young versus aged rat brain striatum and substantia nigra. We observed different brain region-specific HS disaccharide profiles in aged compared with young adult rats for brain region-specific profiles in striatum versus substantia nigra. We observed brain region- and age-specific N-glycan compositional profiles with respect to the terminal galactose units that serve as receptors for AAV9. We also observed brain region-specific changes in protein expression in the aging nigrostriatal pathway. These studies provide insight into age- and brain region-specific changes in glycan receptors and proteome that will inform design of improved viral vectors for Parkinson Disease (PD) gene therapy.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Glicômica , Proteoma/metabolismo , Proteômica , Substância Negra/metabolismo , Animais , Dissacarídeos/metabolismo , Galactose/metabolismo , Heparitina Sulfato/metabolismo , Masculino , Especificidade de Órgãos , Polissacarídeos/metabolismo , Ratos Endogâmicos F344
5.
Mol Cell Proteomics ; 16(4 suppl 1): S42-S53, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28179475

RESUMO

Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.


Assuntos
Cryptosporidium parvum/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Complexo de Golgi/metabolismo , Serina/metabolismo , Asparagina/metabolismo , Sítios de Ligação , Glicoproteínas/metabolismo , Humanos , Estrutura Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Proteômica/métodos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Glycobiology ; 28(5): 333-343, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432542

RESUMO

In many metazoan species, an unusual type of protein glycosylation, called C-mannosylation, occurs on adhesive thrombospondin type 1 repeats (TSRs) and type I cytokine receptors. This modification has been shown to be catalyzed by the Caenorhabditis elegans DPY-19 protein and orthologues of the encoding gene were found in the genome of apicomplexan parasites. Lately, the micronemal adhesin thrombospondin-related anonymous protein (TRAP) was shown to be C-hexosylated in Plasmodium falciparum sporozoites. Here, we demonstrate that also the micronemal protein MIC2 secreted by Toxoplasma gondii tachyzoites is C-hexosylated. When expressed in a mammalian cell line deficient in C-mannosylation, P. falciparum and T. gondii Dpy19 homologs were able to modify TSR domains of the micronemal adhesins TRAP/MIC2 family involved in parasite motility and invasion. In vitro, the apicomplexan enzymes can transfer mannose to a WXXWXXC peptide but, in contrast to C. elegans or mammalian C-mannosyltransferases, are inactive on a short WXXW peptide. Since TSR domains are commonly found in apicomplexan surface proteins, C-mannosylation may be a common modification in this phylum.


Assuntos
Manosiltransferases/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Trombospondina 1/metabolismo , Toxoplasma/metabolismo , Animais , Células CHO , Caenorhabditis elegans/enzimologia , Cricetulus , Plasmodium falciparum/enzimologia , Toxoplasma/enzimologia
7.
J Proteome Res ; 16(2): 677-688, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966990

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of 18O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.


Assuntos
Células Endoteliais/metabolismo , Glicopeptídeos/genética , Polissacarídeos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos/genética , Animais , Aorta/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Peptídeos , Polissacarídeos/genética , Ligação Proteica , Suínos , Espectrometria de Massas em Tandem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Proteome Res ; 16(1): 122-136, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27726376

RESUMO

Human leukocyte antigen-antigen D related (HLA-DR) molecules are highly expressed in synovial tissue (ST), the target of the immune response in chronic inflammatory forms of arthritis. Here, we used LC-MS/MS to identify HLA-DR-presented self-peptides in cells taken directly from clinical samples: ST, synovial fluid mononuclear cells (SFMC), or peripheral blood mononuclear cells (PBMC) from five patients with rheumatoid arthritis (RA) and eight with Lyme arthritis (LA). We identified 1593 non-redundant HLA-DR-presented peptides, derived from 870 source proteins. A total of 67% of the peptides identified in SFMC and 55% of those found in PBMC were found in ST, but analysis of SFMC/PBMC also revealed new antigen-presented peptides. Peptides were synthesized and examined for reactivity with the patients' PBMC. To date, three autoantigens in RA and four novel autoantigens in LA, presented in ST and/or PBMC, were shown to be targets of T- and B-cell responses in these diseases; ongoing analyses may add to this list. Thus, immunoprecipitation and LC-MS/MS can now identify hundreds of HLA-DR-presented self-peptides from individual patients' tissues or fluids with mixed cell populations. Importantly, identification of HLA-DR-presented peptides from SFMC or PBMC allows testing of more patients, including those early in the disease. Direct analysis of clinical samples facilitates identification of novel immunogenic T-cell epitopes.


Assuntos
Artrite Reumatoide/imunologia , Antígenos HLA-DR/imunologia , Doença de Lyme/imunologia , Peptídeos/imunologia , Líquido Sinovial/imunologia , Membrana Sinovial/imunologia , Adolescente , Adulto , Idoso , Apresentação de Antígeno , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Expressão Gênica , Ontologia Genética , Antígenos HLA-DR/química , Antígenos HLA-DR/genética , Humanos , Doença de Lyme/genética , Doença de Lyme/patologia , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Líquido Sinovial/química , Membrana Sinovial/química , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
9.
Anal Chem ; 89(12): 6645-6655, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28530388

RESUMO

Glycomics and glycoproteomics analyses by mass spectrometry require efficient front-end separation methods to enable deep characterization of heterogeneous glycoform populations. Chromatography methods are generally limited in their ability to resolve glycoforms using mobile phases that are compatible with online liquid chromatography-mass spectrometry (LC-MS). The adoption of capillary electrophoresis-mass spectrometry methods (CE-MS) for glycomics and glycoproteomics is limited by the lack of convenient interfaces for coupling the CE devices to mass spectrometers. Here, we describe the application of a microfluidics-based CE-MS system for analysis of released glycans, glycopeptides and monosaccharides. We demonstrate a single CE method for three different modalities, thus contributing to comprehensive glycoproteomics analyses. In addition, we explored compatible sample derivatization methods. We used glycan TMT-labeling to improve electrophoretic migration and enable multiplexed quantitation by tandem MS. We used sialic acid linkage-specific derivatization methods to improve separation and the level of information obtained from a single analytical step. Capillary electrophoresis greatly improved glycoform separation for both released glycans and glycopeptides over that reported for chromatography modes more frequently employed for such analyses. Overall, the CE-MS method described here enables rapid setup and analysis of glycans and glycopeptides using mass spectrometry.


Assuntos
Glicopeptídeos/análise , Técnicas Analíticas Microfluídicas , Monossacarídeos/análise , Oligossacarídeos/análise , Eletroforese Capilar , Espectrometria de Massas , Modelos Moleculares
10.
J Proteome Res ; 13(10): 4347-55, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25153361

RESUMO

A glycoprotein may contain several sites of glycosylation, each of which is heterogeneous. As a consequence of glycoform diversity and signal suppression from nonglycosylated peptides that ionize more efficiently, typical reversed-phase LC-MS and bottom-up proteomics database searching workflows do not perform well for identification of site-specific glycosylation for complex glycoproteins. We present an LC-MS system for enrichment, separation, and analysis of glycopeptides from complex glycoproteins (>4 N-glycosylation sequons) in a single step. This system uses an online HILIC enrichment trap prior to reversed-phase C18-MS analysis. We demonstrated the effectiveness of the system using a set of glycoproteins including human transferrin (2 sequons), human alpha-1-acid glycoprotein (5 sequons), and influenza A virus hemagglutinin (9 sequons). The online enrichment renders glycopeptides the most abundant ions detected, thereby facilitating the generation of high-quality data-dependent tandem mass spectra. The tandem mass spectra exhibited product ions from both glycan and peptide backbone dissociation for a majority of the glycopeptides tested using collisionally activated dissociation that served to confidently assign site-specific glycosylation. We demonstrated the value of our system to define site-specific glycosylation using a hemagglutinin containing 9 N-glycosylation sequons from a single HILIC-C18-MS acquisition.


Assuntos
Glicoproteínas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Espectrometria de Massas , Orosomucoide/química , Orosomucoide/metabolismo , Proteômica
11.
Anal Chem ; 86(19): 9670-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203838

RESUMO

Extracellular matrixes comprise glycoproteins, glycosaminoglycans and proteoglycans that order the environment through which cells receive signals and communicate. Proteomic and glycomic molecular signatures from tissue surfaces can add diagnostic power to the immunohistochemistry workflows. Acquired in a spatially resolved manner, such proteomic and glycomic information can help characterize disease processes and be easily applied in a clinical setting. Our aim toward obtaining integrated omics datasets was to develop the first workflow applicable for simultaneous analysis of glycosaminoglycans, N-glycans and proteins/peptides from tissue surface areas as small as 1.5 mm in diameter. Targeting small areas is especially important in the case of glycans, as their distribution can be very heterogeneous between different tissue regions. We first established reliable and reproducible digestion protocols for the individual compound classes by applying standards on the tissue using microwave irradiation to achieve reduced digestion times. Next, we developed a multienzyme workflow suitable for analysis of the different compound classes. Applicability of the workflow was demonstrated on serial mouse brain and liver sections, both fresh frozen and formalin-fixed. The glycomics data from the 1.5 mm diameter tissue surface area was consistent with data published on bulk mouse liver and brain tissues, which demonstrates the power of the workflow in obtaining combined molecular signatures from very small tissue regions.


Assuntos
Carboidratos/química , Proteômica , Animais , Bovinos
12.
Archaea ; 2012: 873589, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666082

RESUMO

Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene.


Assuntos
Glicoproteínas de Membrana/análise , Methanosarcina/química , DNA Arqueal/genética , Expressão Gênica , Genes Arqueais , Genoma Arqueal , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Methanosarcina/genética , Peso Molecular , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteômica/métodos
13.
Structure ; 27(6): 907-922.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956132

RESUMO

The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.


Assuntos
Cobre/química , Simulação de Dinâmica Molecular , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/genética , Domínios Proteicos , Animais , Linhagem Celular , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Proteínas Priônicas/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
14.
ACS Cent Sci ; 5(2): 237-249, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834312

RESUMO

Up to ∼20% of HIV-infected individuals eventually develop broadly neutralizing antibodies (bnAbs), and many of these antibodies (∼40%) target a region of dense high-mannose glycosylation on gp120 of the HIV envelope protein, known as the "high-mannose patch" (HMP). Thus, there have been numerous attempts to develop glycoconjugate vaccine immunogens that structurally mimic the HMP and might elicit bnAbs targeting this conserved neutralization epitope. Herein, we report on the immunogenicity of glycopeptides, designed by in vitro selection, that bind tightly to anti-HMP antibody 2G12. By analyzing the fine carbohydrate specificity of rabbit antibodies elicited by these immunogens, we found that they differ from some natural human bnAbs, such as 2G12 and PGT128, in that they bind primarily to the core structures within the glycan, rather than to the Manα1 → 2Man termini (2G12) or to the whole glycan (PGT128). Antibody specificity for the glycan core may result from extensive serum mannosidase trimming of the immunogen in the vaccinated animals. This finding has broad implications for vaccine design aiming to target glycan-dependent HIV neutralizing antibodies.

15.
Front Microbiol ; 6: 149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798134

RESUMO

Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to "mine" information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.

16.
Am J Hosp Palliat Care ; 27(1): 84-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19755630

RESUMO

Hospice care is provided at the end of life. End-of-life care is not discussed until it is needed. The average person knows the term but not what it really means until a terminal diagnosis is made. This article discusses the end-of-life issues faced by our mother and how it affected the entire family. The hospice home our mother lived in during the last 2 weeks and 1 day of her life showcased the best hospice has to offer in terms of physical, emotional, and spiritual support.


Assuntos
Cuidados Paliativos na Terminalidade da Vida , Atitude Frente a Morte , Feminino , Humanos , Relações Interpessoais , Qualidade da Assistência à Saúde
17.
Ann Neurol ; 52(5): 675-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12402271

RESUMO

Myoclonus-dystonia is a movement disorder associated with mutations in the epsilon-sarcoglycan gene (SGCE) in most families and in the DRD2 and DYT1 genes in two single families. In both of the latter families, we also found a mutation of SGCE. The molecular mechanisms through which the detected mutations may contribute to myoclonus-dystonia remain to be determined.


Assuntos
Proteínas do Citoesqueleto/genética , Distonia/genética , Glicoproteínas de Membrana/genética , Chaperonas Moleculares , Mutação/genética , Sequência de Bases/genética , Proteínas de Transporte/genética , Análise Mutacional de DNA , Humanos , Dados de Sequência Molecular , Linhagem , Receptores de Dopamina D2/genética , Sarcoglicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA