Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Acoust Soc Am ; 155(1): 145-155, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180155

RESUMO

The call characteristics and vocal behaviour of sei whales (Balaenoptera borealis) off eastern Canada, including potential spatiotemporal variation, is poorly understood. Such information can improve the performance of automated detector-classifiers, enhancing the accuracy and efficiency of identifying sei whales in large acoustic datasets. Ultimately, these data can be used to understand the occurrence, distribution, and population structure of sei whales in Atlantic Canada. We measured sei whale downsweep characteristics recorded from six locations off Nova Scotia (NS) and Newfoundland and Labrador (NFLD), Canada over a two-year period (2015-2017), and examined variation between call subtypes (singlets, doublets, triplets+), and seasons (Spring, Summer, Fall, Winter). We found that downsweeps had a mean duration of 1.58 s, sweeping from 75.66 to 34.22 Hz, with a peak frequency of 43.89 Hz and an intra-call interval of 2.22 s. Most call characteristics did not vary between location, subtype, or season; however, significantly longer downsweeps occurred off NS, within doublet calls, and in fall months. We also found that NFLD had a higher proportion of doublets (70%) than NS (52%). This variation may be evidence of acoustically diverging sei whale populations, as well as useful for improving detector-classifiers of sei whales in the region.


Assuntos
Acústica , Balaenoptera , Animais , Canadá , Citoesqueleto , Estações do Ano
2.
Gen Comp Endocrinol ; 311: 113834, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34181934

RESUMO

Anthropogenic noise is increasing in intensity and scope, resulting in changes to acoustic landscapes and largely negative effects on a range of species. In birds, noise can mask acoustic signals used in a variety of communication systems, including parent-offspring communication. As a result, nestling birds raised in noise may have challenges soliciting food from parents and avoiding detection by predators. Given that passerine nestlings are confined to a nest and therefore cannot escape these challenges, noise may also act as a chronic stressor during their development. Here, we raised Tree Swallow (Tachycineta bicolor) nestlings with or without continuous, white noise to test whether noise exposure affected baseline and stress-induced plasma, integrated feather corticosterone levels, and immune function. Stress physiology and immune function may also vary with the competitive environment during development, so we also examined whether noise effects varied with brood size and nestling mass. We found that overall, exposure to noise did not alter nestling stress physiology or immune function. However, light nestlings raised in noise exhibited lower baseline plasma and integrated feather corticosterone than heavy nestlings, suggesting alternative physiological responses to anthropogenic stimuli. Furthermore, light nestlings in larger broods had reduced PHA-induced immune responses compared to heavy nestlings, and PHA-induced immune responses were associated with higher levels of baseline plasma and feather CORT. Overall, our findings suggest that noise can alter the stress physiology of developing birds; however, these effects may depend on developmental conditions and the presence of other environmental stressors, such as competition for resources. Our findings may help to explain why populations are not uniformly affected by noise.


Assuntos
Andorinhas , Animais , Corticosterona , Plumas , Comportamento de Nidação/fisiologia , Ruído/efeitos adversos , Andorinhas/fisiologia
3.
Proc Biol Sci ; 286(1894): 20181916, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963870

RESUMO

Latitudinal differences in timing of breeding are well documented but how such differences carry over to influence timing of events in the annual cycle of migratory birds is not well understood. We examined geographical variation in timing of events throughout the year using light-level geolocator tracking data from 133 migratory tree swallows ( Tachycineta bicolor) originating from 12 North American breeding populations. A swallow's breeding latitude influenced timing of breeding, which then carried over to affect breeding ground departure. This resulted in subsequent effects on the arrival and departure schedules at autumn stopover locations and timing of arrival at non-breeding locations. This 'domino effect' between timing events was no longer apparent by the time individuals departed for spring migration. Our range-wide analysis demonstrates the lasting impact breeding latitude can have on migration schedules but also highlights how such timing relationships can reset when individuals reside at non-breeding sites for extended periods of time.


Assuntos
Distribuição Animal , Migração Animal , Andorinhas/fisiologia , Animais , Canadá , Geografia , Reprodução , Estações do Ano , Estados Unidos
4.
Ecotoxicology ; 26(1): 97-103, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27888383

RESUMO

Mercury (Hg) is a ubiquitous heavy metal that occurs naturally in the environment, but its levels have been supplemented for decades by a variety of human activities. Mercury can have serious deleterious effects on a variety of organisms, with top predators being particularly susceptible because methylmercury bioaccumulates and biomagnifies in food webs. Among birds, seabirds can have especially high levels of Hg contamination and Leach's storm-petrels (Oceanodroma leucorhoa), in particular, have amongst the highest known levels. Several populations of Leach's storm-petrels have declined recently in the Northwest Atlantic. The causes of these declines remain uncertain, but the toxic effects of Hg could be a potential factor in this decline. Here, we tested for relationships between adult blood total Hg (THg) concentration and several offspring development parameters, and adult return rate of Leach's storm-petrels breeding on Bon Portage Island (43° 28' N, 65° 44' W), Nova Scotia, Canada, between 2011 and 2015 (blood samples n = 20, 36, 6, 15, and 13 for each year, respectively). Overall, THg levels were elevated (0.78 ± 0.43 µg/g wet wt.) compared to other species of seabirds in this region, and varied significantly among years. However, we found no associations between THg levels and reproductive parameters or adult return rate. Our results indicate that levels of mercury observed in Leach's storm-petrel blood, although elevated, appear not to adversely affect their offspring development or adult return rate on Bon Portage Island.


Assuntos
Aves/fisiologia , Monitoramento Ambiental , Poluentes Ambientais/sangue , Mercúrio/sangue , Reprodução/efeitos dos fármacos , Animais , Aves/sangue , Canadá
5.
Biol Lett ; 8(4): 530-2, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22357939

RESUMO

Ambient noise can mask acoustic cues, making their detection and discrimination difficult for receivers. This can result in two types of error: missed detections, when receivers fail to respond to the appropriate cues, and false alarms, when they respond to inappropriate cues. Nestling birds are error-prone, sometimes failing to beg when parents arrive with food (committing missed detections) or begging in response to stimuli other than a parent's arrival (committing false alarms). Here, we ask whether the frequency of these errors by nestling tree swallows (Tachycineta bicolor) increases in the presence of noise. We found that nestlings exposed to noise had more missed detections than their unexposed counterparts. We also found that false alarms remained low overall and did not differ significantly between noise and quiet treatments. Our results suggest that nestlings living in noisy environments may be less responsive to their parents than nestlings in quieter environments.


Assuntos
Comunicação Animal , Comportamento Alimentar/psicologia , Ruído , Andorinhas/fisiologia , Animais , Percepção Auditiva , Sinais (Psicologia) , Discriminação Psicológica/fisiologia , Comportamento de Nidação
6.
Ecology ; 90(11): 3209-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19967876

RESUMO

In many large pelagic animals, observing behavior is limited to observation by radio or satellite telemetry. In many cases, discriminating different behaviors from telemetry data has been a key, but often elusive, goal. Here we use state-space models (SSMs) to fit a correlated random walk (CRW) model that switches between two unobserved behavioral states (nominally foraging and traveling) to 41 male and 43 female adult grey seal (Halichoerus grypus) satellite telemetry tracks. The SSM results reveal markedly different spatial behavior between the sexes, fitting well with sexual size dimorphism and known dietary differences, suggesting that the sexes deal with seasonal prey availability and reproductive costs differently. From these results we were also able to produce behaviorally informed habitat use maps, showing a complex and dynamic network of small, intensely used foraging areas. Our flexible SSM approach clearly demonstrates sex-related behavioral differences, fine scale spatial and temporal foraging patterns, and a clearer picture of grey seal ecology and role in the Scotian Shelf ecosystem.


Assuntos
Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Caracteres Sexuais , Animais , Ecossistema , Feminino , Masculino , Modelos Biológicos , Estações do Ano
7.
Proc Biol Sci ; 275(1638): 1061-5, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18252675

RESUMO

Nestlings of many avian brood parasites are virtuosos at mimicking host nestling vocalizations, which, like egg mimicry, presumably ensures acceptance by host parents. Having been accepted, parasitic nestlings then often exaggerate the aspects of the host's display to increase parental care. Host nestlings may, in turn, exaggerate their vocalizations to keep up with the parasite, though this possibility has not been evaluated. We experimentally parasitized song sparrow (Melospiza melodia) nests with a brown-headed cowbird (Molothrus ater) chick to evaluate how host nestlings respond. Vocalizations emitted from experimentally parasitized nests were higher in frequency, and louder, than those from unparasitized nests, consistent with the cowbird exaggerating its signalling. In response, host nestlings exaggerated the frequency and amplitude of their vocalizations, such that they resembled the cowbird's while they 'scaled back' on calls per parental provisioning bout. Sparrows in parasitized nests were fed equally often as sparrows in unparasitized nests, suggesting that exaggerating some aspects of vocalization while scaling back on others can help host nestlings confronted with a cowbird. Our results support the recently proposed hypothesis that signalling in parasitized nests involves a dynamic interaction between parasitic and host nestlings, rather than a one-way process of mimicry by the parasite.


Assuntos
Comportamento de Nidação , Pardais/fisiologia , Vocalização Animal , Animais , Comportamento Alimentar , Feminino , Masculino , Comportamento Materno , Comportamento Paterno , Estações do Ano , Vitória
8.
J Comp Psychol ; 122(3): 298-304, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18729658

RESUMO

Studies of acoustic interactions in animal groups, such as chorusing insects, anurans, and birds, have been invaluable in showing how cooperation and competition shape signal structure and use. The begging calls of nestling birds are ideal for such studies, because they function both as a cooperative signals of the brood's needs and as competitive signals for parental allocation within the brood. Nonetheless, studies of acoustic interactions among nestlings are rare. Here we review our work on acoustic interactions in nestling tree swallows (Tachycineta bicolor), especially how calls are used in competition for parental feedings. Nestlings attracted parental attention and responded to acoustic interference mainly by increasing call output. However, nestlings also gave more similar calls when they called together and decreased their call bandwidth when exposed to elevated noise. We suggest that these competitive uses of calls might intensify the cooperative brood signal, affecting both parental provisioning and vocal development. Given their tremendous variation across species, begging calls offer promising opportunities for developmental and comparative studies of acoustic signaling.


Assuntos
Acústica , Vocalização Animal , Animais , Aves , Ruído
9.
Proc Biol Sci ; 272(1563): 651-6, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15817440

RESUMO

The apparent extravagance of begging displays is usually attributed to selection for features, such as loud calls, that make the signal costly and hence reliable. An alternative explanation, however, is that these design features are needed for effective signal transmission and reception. Here, we test the latter hypothesis by examining how the begging calls of tree swallow (Tachycineta bicolor) nestlings and the response to these calls by parents are affected by ambient noise. In a field study, we found that call length, amplitude and frequency range all increased with increasing noise levels at nests. In the laboratory, however, only call amplitude increased in response to the playback of noise to nestlings. In field playbacks to parents, similar levels of noise abolished parental preferences for higher call rates, but the preference was restored when call amplitude was increased to the level that nestlings had used in the laboratory study. Our results show that nestling birds, like other acoustic signallers, consistently increase call amplitude in response to ambient noise and this response appears to enhance discrimination by receivers. Thus, selection for signal efficacy may explain some of the seemingly extravagant features of begging displays.


Assuntos
Acústica , Ruído , Andorinhas/fisiologia , Vocalização Animal , Análise de Variância , Animais , Funções Verossimilhança , Comportamento de Nidação/fisiologia , Nova Escócia , Espectrografia do Som
10.
Ecol Evol ; 4(12): 2563-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360286

RESUMO

Long-term wildlife monitoring involves collecting time series data, often using the same observers over multiple years. Aging-related changes to these observers may be an important, under-recognized source of error that can bias management decisions. In this study, we used data from two large, independent bird surveys, the Atlas of the Breeding Birds of Ontario ("OBBA") and the North American Breeding Bird Survey ("BBS"), to test for age-related observer effects in long-term time series of avian presence and abundance. We then considered the effect of such aging phenomena on current population trend estimates. We found significantly fewer detections among older versus younger observers for 13 of 43 OBBA species, and declines in detection as an observer ages for 4 of 6 vocalization groups comprising 59 of 64 BBS species. Consistent with hearing loss influencing this pattern, we also found evidence for increasingly severe detection declines with increasing call frequency among nine high-pitched bird species (OBBA); however, there were also detection declines at other frequencies, suggesting important additional effects of aging, independent of hearing loss. We lastly found subtle, significant relationships between some species' published population trend estimates and (1) their corresponding vocalization frequency (n ≥ 22 species) and (2) their estimated declines in detectability among older observers (n = 9 high-frequency, monotone species), suggesting that observer aging can negatively bias long-term monitoring data for some species in part through hearing loss effects. We recommend that survey designers and modelers account for observer age where possible.

11.
Mov Ecol ; 2(1): 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25709832

RESUMO

BACKGROUND: Animals adjust activity budgets as competing demands for limited time and energy shift across life history phases. For far-ranging migrants and especially pelagic seabirds, activity during breeding and migration are generally well studied but the "overwinter" phase of non-breeding has received less attention. Yet this is a critical time for recovery from breeding, plumage replacement and gaining energy stores for return migration and the next breeding attempt. We aimed to identify patterns in daily activity budgets (i.e. time in flight, floating on the water's surface and active foraging) and associated spatial distributions during overwinter for the laysan Phoebastria immutabilis and black-footed P. nigripes albatrosses using state-space models and generalized additive mixed-effects models (GAMMs). We applied these models to time-series of positional and immersion-state data from small light- and conductivity-based data loggers. RESULTS: During overwinter, both species exhibited a consistent 'quasi-flightless' stage beginning c. 30 days after initiating migration and lasting c. 40 days, characterized by frequent long bouts of floating, very little sustained flight, and infrequent active foraging. Minimal daily movements were made within localized areas during this time; individual laysan albatross concentrated into the northwest corner of the Pacific while black-footed albatross spread widely across the North Pacific Ocean basin. Activity gradually shifted toward increased time in flight and active foraging, less time floating, and greater daily travel distances until colony return c. 155 days after initial departure. CONCLUSIONS: Our results demonstrate that these species make parallel adjustments to activity budgets at a daily time-scale within the overwinter phase of non-breeding despite different at-sea distributions and phenologies. The 'quasi-flightless' stage likely reflects compromised flight from active wing moult while the subsequent increase in activity may occur as priorities shift toward mass gain for breeding. The novel application of a GAMM-based approach used in this study offers the possibility of identifying population-level patterns in shifting activity budgets over extended periods while allowing for individual-level variation in the timing of events. The information gained can also help to elucidate the whereabouts of areas important at different times across life history phases for far-ranging migrants.

12.
Ecol Evol ; 3(11): 3838-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24198943

RESUMO

In populations of colony-breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density-dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population-level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 (o)N 60.0 (o)W). These data were first analyzed using a behaviorally switching state-space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young-of-year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark-resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital-breeding life-history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent.

13.
Anim Behav ; 61(1): 87-93, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11170699

RESUMO

The begging displays used by altricial nestling birds to solicit care from parents include vigorous movements and loud calling. These begging signals have attracted considerable interest, mainly because their intensity seems excessive for the function of transmitting information about nestling need to parents. However, how information on need is encoded in the various components of the signal, especially its acoustic components, is poorly understood. We examined how begging calls of large and small nestling tree swallows, Tachycineta bicolor, changed during a short period of food deprivation and cooling, as a first step in determining the role that various call characteristics played in advertising nestling need. In contrast to previous studies, we examined several call variables, and related them not only to need for food but also need for warmth. When nestlings were deprived of food, their calls increased in rate and length. Large nestlings also increased the amplitude of their calls. When nestlings were cooled during food deprivation, they decreased the frequency of their calls and their call rate. The latter trend was especially evident in small nestlings. Our results suggest that begging calls carry information not only on the overall hunger level of broods, as emphasized in previous studies, but also on the size, hunger and thermal need of individual nestlings. Further tests are needed to determine whether parents use this information and whether begging calls are optimally designed to convey it. Copyright 2001 The Association for the Study of Animal Behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA