Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026111

RESUMO

Direct trophic links between aboveground and belowground animal communities are rarely considered in food web models. Most invertebrate animals inhabiting aboveground space eventually become prey of soil predators and scavengers forming a gravity-driven spatial subsidy to detrital food webs, but its importance remains unquantified. We used laboratory-grown 15N-labeled Collembola to trace the incorporation of arthropod rain into soil food webs. Live or euthanized Collembola were supplemented once to field mesocosms in the amount equivalent to the mean daily input of the arthropod rain (19 mg d.w. m-2). After the addition of live Collembola, the isotopic label was found most often in predatory Trombidiformes (83% of samples) and Mesostigmata mites (85%), followed by Araneae (58%), Chilopoda (45%), and Coleoptera (29%). Among non-predatory groups, the isotopic label was recorded in Thysanoptera (27%), Collembola (24%), and Oribatida (18%). The 15N-label was also detected in Symphyla, Formicidae, Diplura, Diplopoda, Opiliones, Diptera, Hemiptera, Oligochaeta, and Nematoda. There was a positive correlation between natural 15N abundance and the frequency of the isotopic label among predators, but not among decomposers. In the non-replicated treatment, in which dead collembolans were added, the label was found in predators and decomposers in approximately equal proportions (21-25%). Unlike other forms of the aboveground subsidy (such as leaf litter, frass, or honeydew) that are primarily processed by microorganisms, arthropod rain is assimilated directly by the animals. The high frequency of consumption of the aboveground subsidy suggests that it plays a significant role in maintaining the abundance of soil predators.

2.
Mycorrhiza ; 33(1-2): 59-68, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662299

RESUMO

Mycorrhizal fungi represent a potentially abundant carbon resource for soil animals, but their role in soil food webs remains poorly understood. To detect taxa that are trophically linked to the extraradical mycelium of mycorrhizal fungi, we used stable isotope (13C) labelling of whole trees in combination with the in-growth mesh bag technique in two coniferous forests. This allowed us to detect the flux of carbon in the mycelium of mycorrhizal fungi, and consequently in the tissues of soil invertebrates. The mycorrhizal fungal genera constituted 93.5% of reads in mycelium samples from the in-growth mesh bags. All mycelium from in-growth mesh bags and about 32% of the invertebrates sampled (in total 11 taxa) received the 13C label after 45 days of exposure. The extent of feeding of soil invertebrates on the mycelium of mycorrhizal fungi depended on the taxonomic affinity of the animals. The strongest trophic link to the mycorrhiza-derived carbon was detected in Isotomidae (Collembola) and Oppiidae (Oribatida). The label was also observed in the generalist predators, indicating the propagation of mycorrhiza-derived carbon into the higher trophic levels of the soil food web. Higher 13C labelling in the tissues of euedaphic Collembola and Oribatida compared to atmobiotic and hemiedaphic families indicates the importance of mycorrhizal fungi as a food resource for invertebrates in deeper soil horizons.


Assuntos
Micorrizas , Traqueófitas , Animais , Solo , Microbiologia do Solo , Invertebrados , Florestas , Carbono
3.
Sci Rep ; 12(1): 321, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013362

RESUMO

Forest canopy is densely populated by phyto-, sapro-, and microbiphages, as well as predators and parasitoids. Eventually, many of crown inhabitants fall down, forming so-called 'arthropod rain'. Although arthropod rain can be an important food source for litter-dwelling predators and saprophages, its origin and composition remains unexplored. We measured stable isotope composition of the arthropod rain in a temperate mixed forest throughout the growing season. Invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13C and δ15N values of the arthropod rain were primarily driven by the presence of wingless microhytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Winged arthropods were enriched in heavy isotopes relative to wingless specimens, being similar in the isotopic composition to soil-dwelling invertebrates. Moreover, there was no consistent difference in δ13C and δ15N values between saprophages and predators among winged insects, suggesting that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, and are tightly linked to soil food webs.

4.
Zootaxa ; 5057(4): 545-561, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34811193

RESUMO

The description of a new species of oribatid mites (Oribatida) of the family ZetorchestidaeZetorchestes krisperi sp. nov.is proposed based on adult and tritonymph specimens collected from rainforest soil of Bi Dup-Nui Ba National Park (southern Vietnam). We also review the distinguishing characteristics for Zetorchestes species and present an identification key to Zetorchestes species of the world. Diagnostic features of Zetorchestes nymphs are discussed.


Assuntos
Ácaros , Animais , Ninfa , Parques Recreativos , Solo , Vietnã
5.
Ecology ; 102(8): e03421, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34086977

RESUMO

Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 µg in body mass), neutral in the medium-sized (arthropods of 1 µg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.


Assuntos
Cadeia Alimentar , Nematoides , Animais , Biodiversidade , Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA