Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(9): e1006557, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28880932

RESUMO

Mammalian prions, the pathogens that cause transmissible spongiform encephalopathies, propagate by self-perpetuating the structural information stored in the abnormally folded, aggregated conformer (PrPSc) of the host-encoded prion protein (PrPC). To date, no structural model related to prion assembly organization satisfactorily describes how strain-specified structural information is encoded and by which mechanism this information is transferred to PrPC. To achieve progress on this issue, we correlated the PrPSc quaternary structural transition from three distinct prion strains during unfolding and refolding with their templating activity. We reveal the existence of a mesoscopic organization in PrPSc through the packing of a highly stable oligomeric elementary subunit (suPrP), in which the strain structural determinant (SSD) is encoded. Once kinetically trapped, this elementary subunit reversibly loses all replicative information. We demonstrate that acquisition of the templating interface and infectivity requires structural rearrangement of suPrP, in concert with its condensation. The existence of such an elementary brick scales down the SSD support to a small oligomer and provide a basis of reflexion for prion templating process and propagation.


Assuntos
Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Desdobramento de Proteína , Animais , Doenças Transmissíveis , Camundongos , Conformação Proteica
2.
PLoS One ; 12(7): e0180538, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746342

RESUMO

In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.


Assuntos
Príons/química , Agregados Proteicos , Agregação Patológica de Proteínas , Multimerização Proteica , Algoritmos , Animais , Simulação por Computador , Cinética , Modelos Químicos , Desdobramento de Proteína , Ovinos
3.
Neurobiol Aging ; 33(8): 1845.e5-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22365050

RESUMO

Genes selectively expressed in the striatum may be involved in the preferential vulnerability of striatal neurons to Huntington's disease (HD). Here, we investigated whether perturbations of Capucin expression, which is enriched in the striatum and downregulated in Huntington's disease models, could modify the neurotoxicity induced by the injection of a lentiviral vector encoding a short N-terminal fragment of mutant Huntingtin (mHtt) into the mouse striatum. Neither constitutive Capucin deficiency in knockout mice nor lentiviral vector-mediated Capucin overexpression in the striatum of adult wild type mice significantly modified vulnerability to the mHtt fragment in vivo, suggesting that Capucin has no impact on mHtt toxicity.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Proteína Huntingtina , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA