RESUMO
Recognition of foreign nucleic acids is the primary mechanism by which a type I interferon-mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self-nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid-driven inflammation.
Assuntos
Antígenos Virais/imunologia , Autoantígenos/imunologia , Doenças do Sistema Imunitário/imunologia , Ácidos Nucleicos/imunologia , Viroses/imunologia , Animais , Humanos , Doenças do Sistema Imunitário/genética , Tolerância Imunológica , Imunidade Inata , Interferon Tipo I/metabolismo , Viroses/genéticaRESUMO
TLR7 recognizes pathogen-derived single-stranded RNA (ssRNA), a function integral to the innate immune response to viral infection. Notably, TLR7 can also recognize self-derived ssRNA, with gain-of-function mutations in human TLR7 recently identified to cause both early-onset systemic lupus erythematosus (SLE) and neuromyelitis optica. Here, we describe two novel mutations in TLR7, F507S and L528I. While the L528I substitution arose de novo, the F507S mutation was present in three individuals from the same family, including a severely affected male, notably given that the TLR7 gene is situated on the X chromosome and that all other cases so far described have been female. The observation of mutations at residues 507 and 528 of TLR7 indicates the importance of the TLR7 dimerization interface in maintaining immune homeostasis, where we predict that altered homo-dimerization enhances TLR7 signaling. Finally, while mutations in TLR7 can result in SLE-like disease, our data suggest a broader phenotypic spectrum associated with TLR7 gain-of-function, including significant neurological involvement.
Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Feminino , Masculino , Humanos , Receptor 7 Toll-Like , Mutação , Dimerização , RNARESUMO
NLRP3 inflammasome activation is accompanied by induction of mitochondrial damage. In the current issue of Cell, Zhong et al. describe an intracellular mechanism orchestrated by NF-κB to remove inflammasome-activating damaged mitochondria and prevent pathologic inflammation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , AnimaisRESUMO
INTRODUCTION: Juvenile systemic lupus erythematosus (j-SLE) is a rare chronic autoimmune disease affecting multiple organs. Ranging from minor features, such as headache or mild cognitive impairment, to serious and life-threatening presentations, j-neuropsychiatric SLE (j-NPSLE) is a therapeutic challenge. Thus, the diagnosis of NPSLE remains difficult, especially in pediatrics, with no specific biomarker of the disease yet validated. OBJECTIVES: To identify central nervous system (CNS) disease biomarkers of j-NPSLE. METHODS: A 5-year retrospective tertiary reference monocentric j-SLE study. A combination of standardized diagnostic criteria and multidisciplinary pediatric clinical expertise was combined to attribute NP involvement in the context of j-SLE. Neopterin and interferon-alpha (IFN-α) protein levels in cerebrospinal fluid (CSF) were assessed, together with routine biological and radiological investigations. RESULTS: Among 51 patients with j-SLE included, 39% presented with j-NPSLE. J-NPSLE was diagnosed at onset of j-SLE in 65% of patients. No specific routine biological or radiological marker of j-NPSLE was identified. However, CSF neopterin levels were significantly higher in active j-NPSLE with CNS involvement than in j-SLE alone (p = 0.0008). Neopterin and IFN-α protein levels in CSF were significantly higher at diagnosis of j-NPSLE with CNS involvement than after resolution of NP features (respectively p = 0.0015 and p = 0.0010) upon immunosuppressive treatment in all patients tested (n = 10). Both biomarkers correlated strongly with each other (Rs = 0.832, p < 0.0001, n = 23 paired samples). CONCLUSION: CSF IFN-α and neopterin constitute promising biomarkers useful in the diagnosis and monitoring of activity in j-NPSLE.
Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Criança , Estudos Retrospectivos , Neopterina , Doenças Neuroinflamatórias , Lúpus Eritematoso Sistêmico/diagnóstico , BiomarcadoresRESUMO
The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Transdução de Sinais , Testes GenéticosRESUMO
Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.
Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interferon Tipo I/genética , Interferon-alfa/genética , Especificidade de Órgãos/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon Tipo I/líquido cefalorraquidiano , Interferon Tipo I/metabolismo , Interferon-alfa/líquido cefalorraquidiano , Interferon-alfa/metabolismo , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Adulto JovemRESUMO
OBJECTIVES: JDM and juvenile overlap myositis represent heterogeneous subtypes of juvenile idiopathic inflammatory myopathy (JIIM). Chronic evolution can occur in up to 60% of cases, and morbidity/mortality is substantial. We aimed to describe the clinical, biological, histological and type I IFN status in JIIM associated with anti-melanoma differentiation-associated protein 5 (anti-MDA5) autoantibodies at presentation (group 1) in comparison with other JIIM (group 2). METHODS: This was a retrospective and prospective study of patients with JIIM ascertained from three French paediatric rheumatology reference centres between 2013 and 2019. Muscle biopsies were reviewed. Type I interferon pathway activity was assessed by dosage of IFNα serum protein and the expression of IFN-stimulated genes. RESULTS: Sixty-four patients were included, 13 in group 1 (54% JDM and 46% juvenile overlap myositis) and 51 in group 2 (76% JDM and 24% juvenile overlap myositis). Group 1 patients demonstrated more arthritis, skin ulcerations, lupus features and interstitial lung disease, and a milder muscular involvement. Serum IFNα levels were higher in group 1 than 2, and decreased after treatment or improvement in both groups. Outcome was similar in both groups. Unconventional treatment (more than two lines) was required in order to achieve remission, especially when skin ulceration was reported. CONCLUSION: This study indicates a higher frequency of arthritis, skin ulcerations and interstitial lung disease, but milder muscular involvement, in JIIM with positive anti-MDA5 autoantibodies compared with other JIIM. Our data support an important role of systemic IFNα in disease pathology, particularly in the anti-MDA5 auto-antibody-positive subgroup. In severe and refractory forms of JIIM, IFNα may represent a therapeutic target.
Assuntos
Autoanticorpos/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon-alfa/metabolismo , Músculo Esquelético/metabolismo , Miosite/metabolismo , Transdução de Sinais/fisiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miosite/imunologia , Miosite/patologia , Estudos Prospectivos , Estudos RetrospectivosAssuntos
Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Interferons/metabolismo , Malformações do Sistema Nervoso/tratamento farmacológico , Inibidores da Transcriptase Reversa/uso terapêutico , Doenças Autoimunes do Sistema Nervoso/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Didesoxinucleosídeos/uso terapêutico , Combinação de Medicamentos , França , Expressão Gênica/efeitos dos fármacos , Humanos , Interferons/genética , Lamivudina/uso terapêutico , Malformações do Sistema Nervoso/metabolismo , Projetos Piloto , Zidovudina/uso terapêuticoRESUMO
UNLABELLED: Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4(+) T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE: The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Internalização do Vírus , Animais , Antígenos CD4/análise , Cercocebus atys , Chlorocebus aethiops , Células Dendríticas/química , Receptores CCR5/análiseRESUMO
UNLABELLED: Lentiviral RNA genomes present a strong bias in their nucleotide composition with extremely high frequencies of A nucleotide in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). Based on the observation that human optimization of RNA virus gene fragments may abolish their ability to stimulate the type I interferon (IFN-I) response, we identified the most biased sequences along the SIV genome and showed that they are the most potent IFN-I stimulators. With the aim of designing an attenuated SIV genome based on a reduced capacity to activate the IFN-I response, we synthesized artificial SIV genomes whose biased sequences were optimized toward macaque average nucleotide composition without altering their regulatory elements or amino acid sequences. A synthetic SIV optimized with 169 synonymous mutations in gag and pol genes showed a 100-fold decrease in replicative capacity. Interestingly, a synthetic SIV optimized with 70 synonymous mutations in pol had a normal replicative capacity. Its ability to stimulate IFN-I was reduced when infected cells were cocultured with reporter cells. IFN regulatory factor 3 (IRF3) transcription factor was required for IFN-I stimulation, implicating cytosolic sensors in the detection of SIV-biased RNA in infected cells. No reversion of introduced mutations was observed for either of the optimized viruses after 10 serial passages. In conclusion, we have designed large-scale nucleotide-modified SIVs that may display attenuated pathogenic potential. IMPORTANCE: In this study, we synthesized artificial SIV genomes in which the most hyperbiased sequences were optimized to bring them closer to the nucleotide composition of the macaque SIV host. Interestingly, we generated a stable synthetic SIV optimized with 70 synonymous mutations in pol gene, which had a normal replicative capacity but a reduced ability to stimulate type I IFN. This demonstrates the possibility to rationally change viral nucleotide composition to design replicative and genetically stable lentiviruses with attenuated pathogenic potentials.
Assuntos
Interferon Tipo I/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Animais , Sequência de Bases , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Interferon Tipo I/genética , Macaca mulatta , Dados de Sequência Molecular , Mutação , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologiaRESUMO
RATIONALE: It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome. OBJECTIVES: To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC. METHODS: The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA. MEASUREMENTS AND MAIN RESULTS: Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome. CONCLUSIONS: B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
Assuntos
Subpopulações de Linfócitos B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunidade Humoral , Neoplasias Pulmonares/imunologia , Biomarcadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Estudos de Coortes , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Masculino , Prognóstico , Estudos RetrospectivosRESUMO
UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.
Assuntos
Pérnio , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Feminino , Humanos , Masculino , Pérnio/genética , Mutação com Ganho de Função , Células HEK293 , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Linhagem , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Pré-Escolar , Criança , Adulto Jovem , AdultoRESUMO
Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinï¬ammatory signaling.
Assuntos
Complexo I de Proteína do Envoltório , Proteína Coatomer , Criança , Humanos , Proteína Coatomer/genética , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Mutação , Síndrome , Complexo de Golgi/genética , Complexo de Golgi/metabolismoRESUMO
Foamy viruses (FV) are nonpathogenic retroviruses that have cospeciated with primates for millions of years. FV can be transmitted through severe bites from monkeys to humans. Viral loads remain generally low in infected humans, and no secondary transmission has been reported. Very little is known about the ability of FV to trigger an innate immune response in human cells. A few previous reports suggested that FV do not induce type I interferon (IFN) in nonhematopoietic cells. Here, we examined how human hematopoietic cells sense FV particles and FV-infected cells. We show that peripheral blood mononuclear cells (PBMCs), plasmacytoid dendritic cells (pDCs), and the pDC-like cell line Gen2.2 detect FV, produce high levels of type I IFN, and express the IFN-stimulated gene MxA. Fewer than 20 FV-infected cells are sufficient to trigger an IFN response. Both prototypic and primary viruses stimulated IFN release. Donor cells expressing a replication-defective virus, carrying a mutated reverse transcriptase, induced IFN production by target cells as potently as wild-type virus. In contrast, an FV strain with env deleted, which does not produce viral particles, was inactive. IFN production was blocked by an inhibitor of endosomal acidification (bafilomycin A1) and by an endosomal Toll-like receptor (TLR) antagonist (A151). Silencing experiments in Gen2.2 further demonstrated that TLR7 is involved in FV recognition. Therefore, FV are potent inducers of type I IFN by pDCs and by PBMCs. This previously underestimated activation of the innate immune response may be involved in the control of viral replication in humans.
Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Infecções por Retroviridae/imunologia , Spumavirus/imunologia , Animais , Linhagem Celular , Células Cultivadas , Células Dendríticas/virologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Leucócitos Mononucleares/virologia , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia , Spumavirus/fisiologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologiaRESUMO
Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection.
Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfócitos/metabolismo , Linfócitos/virologia , Western Blotting , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , HIV , Infecções por HIV/metabolismo , Soropositividade para HIV , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon-alfa/metabolismo , Linfócitos/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Vírion/patogenicidade , Replicação ViralRESUMO
Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Termination is achieved through autophagic degradation or recycling of STING by retrograde Golgi-to-ER transport. Here, we identify the GTPase ADP-ribosylation factor 1 (ARF1) as a crucial negative regulator of cGAS-STING signalling. Heterozygous ARF1 missense mutations cause a previously unrecognized type I interferonopathy associated with enhanced IFN-stimulated gene expression. Disease-associated, GTPase-defective ARF1 increases cGAS-STING dependent type I IFN signalling in cell lines and primary patient cells. Mechanistically, mutated ARF1 perturbs mitochondrial morphology, causing cGAS activation by aberrant mitochondrial DNA release, and leads to accumulation of active STING at the Golgi/ERGIC due to defective retrograde transport. Our data show an unexpected dual role of ARF1 in maintaining cGAS-STING homeostasis, through promotion of mitochondrial integrity and STING recycling.
Assuntos
Interferon Tipo I , Humanos , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de SinaisRESUMO
Poxvirus-based human immunodeficiency virus (HIV) vaccine candidates are currently under evaluation in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA) vectors have excellent safety and immunogenicity records, but their behavior in human cell cultures remains only partly characterized. We studied here various virological and immunological aspects of the interactions of MVA-HIV, a vaccine candidate developed by the French National Agency for AIDS Research (ANRS), with primary human cells. We report that MVA-HIV infects and drives Gag expression in primary macrophages, dendritic cells (DCs), and epithelial and muscle cells. MVA-HIV-infected DCs matured, efficiently presented Gag, Pol, and Nef antigens, and activated HIV-specific cytotoxic T lymphocytes (CTLs). As expected with this type of vector, infection was cytopathic and led to DC apoptosis. Coculture of MVA-HIV-infected epithelial cells or myotubes with DCs promoted efficient Gag antigen major histocompatibility complex class I (MHC-I) cross-presentation without inducing direct infection and death of DCs. Antigen-presenting cells (APCs) infected with MVA-HIV also activated HIV-specific CD4(+) T cells. Moreover, exposure of DCs to MVA-HIV or to MVA-HIV-infected myotubes induced type I interferon (IFN) production and inhibited subsequent HIV replication and transfer to lymphocytes. Altogether, these results show that MVA-HIV promotes efficient MHC-I and MHC-II presentation of HIV antigens by APCs without facilitating HIV replication. Deciphering the immune responses to MVA in culture experiments will help in the design of innovative vaccine strategies.
Assuntos
Vacinas contra a AIDS/imunologia , Apresentação de Antígeno , Vetores Genéticos , Vaccinia virus/genética , Vacinas contra a AIDS/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos , Linfócitos T Citotóxicos/imunologiaRESUMO
Mitochondria have emerged as critical players in immune homeostasis and disease. Recently in Cell, while characterizing the removal of mitochondria from red blood cells during human erythropoiesis, Caielli et al. highlight the interferon-inducing potential of erythrocyte-derived mitochondria in lupus.
Assuntos
Eritrócitos , Eritropoese , Eritrócitos/metabolismo , Humanos , MitocôndriasRESUMO
The immune response to viral infection involves the recognition of pathogen-derived nucleic acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can lead to autoinflammation, a phenomenon implicated in an increasing number of disease states, and well highlighted by the group of rare genetic disorders referred to as the type I interferonopathies. To understand the pathogenesis of these monogenic disorders, and polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid species responsible for such abnormal IFN induction. Recently, attention has focused on mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic cells, containing their own DNA and RNA enclosed within the inner mitochondrial membrane. There is increasing recognition that a loss of mitochondrial integrity and compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol, leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we summarize current understanding of how nucleic acids are detected as foreign when released into the cytosol, and then consider the findings implicating mitochondrial nucleic acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven pathology in primary mitochondrial disorders.
Assuntos
DNA Mitocondrial/imunologia , Interferons/metabolismo , Mitocôndrias/imunologia , Doenças Mitocondriais/imunologia , RNA Mitocondrial/imunologia , Animais , Autoimunidade , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Imunidade Inata , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Transdução de Sinais , Regulação para CimaRESUMO
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.