Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 256: 119227, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452804

RESUMO

Re-directing attention to objects in working memory can enhance their representational fidelity. However, how this attentional enhancement of memory representations is implemented across distinct, sensory and cognitive-control brain network is unspecified. The present fMRI experiment leverages psychophysical modelling and multivariate auditory-pattern decoding as behavioral and neural proxies of mnemonic fidelity. Listeners performed an auditory syllable pitch-discrimination task and received retro-active cues to selectively attend to a to-be-probed syllable in memory. Accompanied by increased neural activation in fronto-parietal and cingulo-opercular networks, valid retro-cues yielded faster and more perceptually sensitive responses in recalling acoustic detail of memorized syllables. Information about the cued auditory object was decodable from hemodynamic response patterns in superior temporal sulcus (STS), fronto-parietal, and sensorimotor regions. However, among these regions retaining auditory memory objects, neural fidelity in the left STS and its enhancement through attention-to-memory best predicted individuals' gain in auditory memory recall precision. Our results demonstrate how functionally discrete brain regions differentially contribute to the attentional enhancement of memory representations.


Assuntos
Mapeamento Encefálico , Memória de Curto Prazo , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo/fisiologia , Discriminação da Altura Tonal/fisiologia
2.
Neuroimage ; 263: 119661, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198353

RESUMO

Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate, R2*, the coupling ratios, and their dependence on CBF at rest, CBFrest, indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Mapeamento Encefálico/métodos , Imagem Ecoplanar , Oxigênio
3.
BMC Neurosci ; 21(1): 23, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471365

RESUMO

BACKGROUND: Alexithymia is a personality trait characterized by difficulties identifying and describing feelings, an externally oriented style of thinking, and a reduced inclination to imagination. Previous research has shown deficits in the recognition of emotional facial expressions in alexithymia and reductions of brain responsivity to emotional stimuli. Using an affective priming paradigm, we investigated automatic perception of facial emotions as a function of alexithymia at the behavioral and neural level. In addition to self-report scales, we applied an interview to assess alexithymic tendencies. RESULTS: During 3 T fMRI scanning, 49 healthy individuals judged valence of neutral faces preceded by briefly shown happy, angry, fearful, and neutral facial expressions. Alexithymia was assessed using the 20-Item Toronto Alexithymia Scale (TAS-20), the Bermond-Vorst Alexithymia Questionnaire (BVAQ) and the Toronto Structured Interview for Alexithymia (TSIA). As expected, only negative correlations were found between alexithymic features and affective priming. The global level of self-reported alexithymia (as assessed by the TAS-20 and the BVAQ) was found to be related to less affective priming owing to angry faces. At the facet level, difficulties identifying feelings, difficulties analyzing feelings, and impoverished fantasy (as measured by the BVAQ) were correlated with reduced affective priming due to angry faces. Difficulties identifying feelings (BVAQ) correlated also with reduced affective priming due to fearful faces and reduced imagination (TSIA) was related to decreased affective priming due to happy faces. There was only one significant correlation between alexithymia dimensions and automatic brain response to masked facial emotions: TAS-20 alexithymia correlated with heightened brain response to masked happy faces in superior and medial frontal areas. CONCLUSIONS: Our behavioral results provide evidence that alexithymic features are related in particular to less sensitivity for covert facial expressions of anger. The perceptual alterations could reflect impaired automatic recognition or integration of social anger signals into judgemental processes and might contribute to the problems in interpersonal relationships associated with alexithymia. Our findings suggest that self-report measures of alexithymia may have an advantage over interview-based tests as research tools in the field of emotion perception at least in samples of healthy individuals characterized by rather low levels of alexithymia.


Assuntos
Sintomas Afetivos/psicologia , Comportamento/fisiologia , Encéfalo/fisiologia , Emoções/fisiologia , Adolescente , Adulto , Sintomas Afetivos/fisiopatologia , Mapeamento Encefálico/métodos , Face/fisiologia , Expressão Facial , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
4.
Neuroimage ; 125: 880-894, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26505301

RESUMO

Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Eletroencefalografia/instrumentação , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
5.
Cogn Affect Behav Neurosci ; 16(1): 135-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26350626

RESUMO

Bayesian models are currently a dominant framework for describing human information processing. However, it is not clear yet how major tenets of this framework can be translated to brain processes. In this study, we addressed the neural underpinning of prior probability and its effect on anticipatory activity in category-specific areas. Before fMRI scanning, participants were trained in two behavioral sessions to learn the prior probability and correct order of visual events within a sequence. The events of each sequence included two different presentations of a geometric shape and one picture of either a house or a face, which appeared with either a high or a low likelihood. Each sequence was preceded by a cue that gave participants probabilistic information about which items to expect next. This allowed examining cue-related anticipatory modulation of activity as a function of prior probability in category-specific areas (fusiform face area and parahippocampal place area). Our findings show that activity in the fusiform face area was higher when faces had a higher prior probability. The finding of a difference between levels of expectations is consistent with graded, probabilistically modulated activity, but the data do not rule out the alternative explanation of a categorical neural response. Importantly, these differences were only visible during anticipation, and vanished at the time of stimulus presentation, calling for a functional distinction when considering the effects of prior probability. Finally, there were no anticipatory effects for houses in the parahippocampal place area, suggesting sensitivity to stimulus material when looking at effects of prediction.


Assuntos
Mapeamento Encefálico , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa , Probabilidade , Tempo de Reação
6.
Neuroimage ; 116: 68-79, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25976924

RESUMO

Ventral striatal activity has been previously shown to correspond well to reward value mediated by music. Here, we investigate the dynamic brain response to music and manipulated counterparts using functional magnetic resonance imaging (fMRI). Counterparts of musical excerpts were produced by either manipulating the consonance/dissonance of the musical fragments or playing them backwards (or both). Results show a greater involvement of the ventral striatum/nucleus accumbens both when contrasting listening to music that is perceived as pleasant and listening to a manipulated version perceived as unpleasant (backward dissonant), as well as in a parametric analysis for increasing pleasantness. Notably, both analyses yielded a ventral striatal response that was strongest during an early phase of stimulus presentation. A hippocampal response to the musical stimuli was also observed, and was largely mediated by processing differences between listening to forward and backward music. This hippocampal involvement was again strongest during the early response to the music. Auditory cortex activity was more strongly evoked by the original (pleasant) music compared to its manipulated counterparts, but did not display a similar decline of activation over time as subcortical activity. These findings rather suggest that the ventral striatal/nucleus accumbens response during music listening is strongest in the first seconds and then declines.


Assuntos
Percepção Auditiva/fisiologia , Música/psicologia , Núcleo Accumbens/fisiologia , Estriado Ventral/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Recompensa , Adulto Jovem
7.
Neuroimage ; 87: 170-82, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24188812

RESUMO

A growing number of magnetic resonance imaging studies employ voxel-based morphometry (VBM) to assess structural brain changes. Recent reports have shown that image acquisition parameters may influence VBM results. For systematic evaluation, gray-matter-density (GMD) changes associated with aging were investigated by VBM employing acquisitions with different radiofrequency head coils (12-channel matrix coil vs. 32-channel array), different pulse sequences (MP-RAGE vs. MP2RAGE), and different voxel dimensions (1mm vs. 0.8mm). Thirty-six healthy subjects, classified as young, middle-aged, or elderly, participated in the study. Two-sample and paired t-tests revealed significant effects of acquisition parameters (coil, pulse sequence, and resolution) on the estimated age-related GMD changes in cortical and subcortical regions. Potential advantages in tissue classification and segmentation were obtained for MP2RAGE. The 32-channel coil generally outperformed the 12-channel coil, with more benefit for MP2RAGE. Further improvement can be expected from higher resolution if the loss in SNR is accounted for. Use of inconsistent acquisition parameters in VBM analyses is likely to introduce systematic bias. Overall, acquisition and protocol changes require careful adaptations of the VBM analysis strategy before generalized conclusion can be drawn.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Neuroimage ; 97: 349-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24742920

RESUMO

Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.


Assuntos
Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Oxigênio/sangue , Adulto , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/ultraestrutura , Capilares/anatomia & histologia , Capilares/ultraestrutura , Circulação Cerebrovascular/fisiologia , Movimentos Oculares/fisiologia , Feminino , Haplorrinos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Neurônios/ultraestrutura , Córtex Visual/anatomia & histologia , Adulto Jovem
9.
Hum Brain Mapp ; 35(7): 3170-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24142534

RESUMO

The left dorsolateral prefrontal cortex (ldlPFC) has been highlighted as a key actor in human perceptual decision-making (PDM): It is theorized to support decision-formation independently of stimulus type or motor response. PDM studies however generally confound stimulus onset and task onset: when the to-be-recognized stimulus is presented, subjects know that a stimulus is shown and can set up processing resources-even when they do not know which stimulus is shown. We hypothesized that the ldlPFC might be involved in task preparation rather than decision-formation. To test this, we asked participants to report whether sequences of noisy images contained a face or a house within an experimental design that decorrelates stimulus and task onset. Decision-related processes should yield a sustained response during the task, whereas preparation-related areas should yield transient responses at its beginning. The results show that the brain activation pattern at task onset is strikingly similar to that observed in previous PDM studies. In particular, they contradict the idea that ldlPFC forms an abstract decision and suggest instead that its activation reflects preparation for the upcoming task. We further investigated the role of the fusiform face areas and parahippocampal place areas which are thought to be face and house detectors, respectively, that feed their signals to higher level decision areas. The response patterns within these areas suggest that this interpretation is unlikely and that the decisions about the presence of a face or a house in a noisy image might instead already be computed within these areas without requiring higher-order areas.


Assuntos
Atenção/fisiologia , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Valor Preditivo dos Testes , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/fisiologia , Análise de Regressão , Adulto Jovem
10.
BMC Neurosci ; 15: 40, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24629094

RESUMO

BACKGROUND: Alexithymia is a personality trait that is characterized by difficulties in identifying and describing feelings. Previous studies have shown that alexithymia is related to problems in recognizing others' emotional facial expressions when these are presented with temporal constraints. These problems can be less severe when the expressions are visible for a relatively long time. Because the neural correlates of these recognition deficits are still relatively unexplored, we investigated the labeling of facial emotions and brain responses to facial emotions as a function of alexithymia. RESULTS: Forty-eight healthy participants had to label the emotional expression (angry, fearful, happy, or neutral) of faces presented for 1 or 3 seconds in a forced-choice format while undergoing functional magnetic resonance imaging. The participants' level of alexithymia was assessed using self-report and interview. In light of the previous findings, we focused our analysis on the alexithymia component of difficulties in describing feelings. Difficulties describing feelings, as assessed by the interview, were associated with increased reaction times for negative (i.e., angry and fearful) faces, but not with labeling accuracy. Moreover, individuals with higher alexithymia showed increased brain activation in the somatosensory cortex and supplementary motor area (SMA) in response to angry and fearful faces. These cortical areas are known to be involved in the simulation of the bodily (motor and somatosensory) components of facial emotions. CONCLUSION: The present data indicate that alexithymic individuals may use information related to bodily actions rather than affective states to understand the facial expressions of other persons.


Assuntos
Sintomas Afetivos/fisiopatologia , Emoções , Expressão Facial , Córtex Motor/fisiopatologia , Desempenho Psicomotor , Tempo de Reação , Córtex Somatossensorial/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Exp Brain Res ; 232(2): 619-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24322820

RESUMO

Many studies have demonstrated attenuated verbal working memory (WM) under articulatory suppression. However, performance is not completely abolished, suggesting a less efficient, non-articulatory mechanism for the maintenance of verbal information. The neural causes for the reduced efficiency of such a putative complementary maintenance system have not yet been addressed. The present study was conducted to fill this gap. Subjects performed a Sternberg task (a) under articulatory maintenance at low, high, and supracapacity set sizes and (b) under non-articulatory maintenance at low and high set sizes. With functional magnetic resonance imaging, set-size related increases in activity were compared between subvocal articulatory rehearsal and non-articulatory maintenance. First, the results replicate previous findings showing different networks underlying these two maintenance strategies. Second, activation of all key nodes of the articulatory maintenance network increased with the amount of memorized information, showing no plateau at high set sizes. In contrast, for non-articulatory maintenance, there was evidence for a plateau at high set sizes in all relevant areas of the network. Third, for articulatory maintenance, the non-articulatory maintenance network was additionally recruited at supracapacity set sizes, presumably to assist processing in this highly demanding condition. This is the first demonstration of differential neural bottlenecks for articulatory and non-articulatory maintenance. This study adds to our understanding of the performance differences between these two strategies supporting verbal WM.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Fonética , Comportamento Verbal/fisiologia , Aprendizagem Verbal/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inibição Psicológica , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Adulto Jovem
12.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187724

RESUMO

The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both ß-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with good reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.

13.
J Magn Reson Imaging ; 36(4): 835-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22730254

RESUMO

PURPOSE: To test for potential changes in higher-order cognitive processes related to the exposure to a high static magnetic field. MATERIALS AND METHODS: Twenty-four healthy volunteers participated in two experimental sessions inside a 3 Tesla (T) magnetic resonance imaging (MRI) magnet. During one session the magnetic field was ramped down. The tasks consisted of six well-established paradigms probing a variety of cognitive functions. Reaction times (RT) and accuracies (AC) were recorded for statistical analysis. RESULTS: The overall performance was very similar in both sessions. Strong task-specific effects (all P < 0.006) were consistent with previously published results. Direct comparisons of task-specific effects between the two sessions (magnetic field on or off) remained insignificance for all paradigms (RT: all P > 0.196; AC: all P > 0.17; no corrections for multiple comparisons). CONCLUSION: The results did not indicate any apparent safety concerns with respect to cognitive performance in a static magnetic field of a typical whole-body magnet. In addition, comparisons of cognitive effects from testing situations with and without exposure to high static magnetic fields can be considered valid.


Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Cognição/fisiologia , Cognição/efeitos da radiação , Campos Magnéticos , Imageamento por Ressonância Magnética , Análise e Desempenho de Tarefas , Adulto , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Doses de Radiação , Adulto Jovem
14.
Neuroimage ; 54(1): 337-43, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20728550

RESUMO

Functional magnetic resonance imaging (fMRI) in auditory experiments is a challenge, because the scanning procedure produces considerable noise that can interfere with the auditory paradigm. The noise might either mask the auditory material presented, or interfere with stimuli designed to evoke emotions because it sounds loud and rather unpleasant. Therefore, scanning paradigms that allow interleaved auditory stimulation and image acquisition appear to be advantageous. The sparse temporal sampling (STS) technique uses a very long repetition time in order to achieve a stimulus presentation in the absence of scanner noise. Although only relatively few volumes are acquired for the resulting data sets, there have been recent studies where this method has furthered remarkable results. A new development is the interleaved silent steady state (ISSS) technique. Compared with STS, this method is capable of acquiring several volumes in the time frame between the auditory trials (while the magnetization is kept in a steady state during stimulus presentation). In order to draw conclusions about the optimum fMRI procedure with auditory stimulation, different echo-planar imaging (EPI) acquisition schemes were compared: Continuous scanning, STS, and ISSS. The total acquisition time of each sequence was adjusted to about 12.5 min. The results indicate that the ISSS approach exhibits the highest sensitivity in detecting subtle activity in sub-cortical brain regions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Música , Estimulação Acústica , Córtex Auditivo/anatomia & histologia , Córtex Auditivo/fisiologia , Encéfalo/anatomia & histologia , Dissonância Cognitiva , Lateralidade Funcional , Audição/fisiologia , Humanos , Ruído
15.
J Inherit Metab Dis ; 34(3): 711-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21491106

RESUMO

BACKGROUND: Profound mental retardation in phenylketonuria (PKU) can be prevented by a low phenylalanine (Phe) diet. However, even patients treated early have inconsistently shown deficits in several frontal lobe-related neuropsychological tasks such as the widely accepted Stroop task. The goal of this study was to investigate whether adult patients exhibit altered brain activation in Stroop-related locations in comparison to healthy controls and if an acute increase in blood Phe levels in patients has an effect on activation patterns. METHODS: Seventeen male, early-treated patients with classic PKU (mean ± SD age: 31.0 ± 5.2 years) and 15 male healthy controls (32.1 ± 6.4 years) were compared using a color-word matching Stroop task in a functional magnetic resonance imaging (fMRI) study at 3T. Participants were scanned twice, and an oral Phe load (100 mg/kg body weight) was administered to patients prior to one of the fMRI sessions (placebo-controlled). Activity in brain regions that are known to be involved in Stroop tasks was assessed. RESULTS: PKU patients exhibited poorer accuracy in incongruent trials. Reaction times were not significantly different. There were no consistent differences in BOLD activations in Stroop-associated brain regions. The oral Phe administration had no significant effect on brain activity. CONCLUSIONS: Neither a generally slower task performance nor distinctively altered functioning of brain networks involved in a task representing a subset of dopamine-dependent executive functions could be proven. Decreased accuracy and inconsistent findings in posterior areas necessitate further study of frontal-lobe functioning in PKU patients in larger study samples.


Assuntos
Encéfalo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenilcetonúrias/diagnóstico por imagem , Fenilcetonúrias/fisiopatologia , Adulto , Comportamento/fisiologia , Encéfalo/fisiopatologia , Lobo Frontal/fisiopatologia , Humanos , Testes de Inteligência , Masculino , Testes Neuropsicológicos , Fenilalanina/sangue , Fenilcetonúrias/psicologia , Placebos , Radiografia , Adulto Jovem
16.
Neuron ; 49(6): 905-16, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16543137

RESUMO

Attentional orienting and memory are intrinsically bound, but their interaction has rarely been investigated. Here we introduce an experimental paradigm using naturalistic scenes to investigate how long-term memory can guide spatial attention and thereby enhance identification of events in the perceptual domain. In the task, stable memories of objects embedded within complex scenes guide spatial orienting. We compared the behavioral effects and neural systems of memory-guided orienting with those in a more traditional attention-orienting task in which transient spatial cues guide attention. Memory-guided attention operated within surprisingly short intervals and conferred reliable and sizeable advantages for detection of objects embedded in scenes. Event-related functional magnetic resonance imaging showed that memory-guided attention involves the interaction between brain areas participating in retrieval of memories for spatial context with the parietal-frontal network for visual spatial orienting. Activity in the hippocampus was specifically engaged in memory-guided spatial attention and correlated with the ensuing behavioral advantage.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Memória/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia , Adulto , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Feminino , Área de Dependência-Independência , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Fatores de Tempo , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia
17.
J Neurosci ; 29(25): 8032-8, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19553443

RESUMO

Recent studies have revealed that the internal representations that we construct from the environment and maintain in visual short-term memory (VSTM) to guide behavior are highly flexible and can be selectively modulated according to our task goals and expectations. In the current study, we conducted two experiments to compare and contrast neural mechanisms of selective attention related to searching for target items within perceptual versus VSTM representations. We used event-related potentials to investigate whether searching for relevant target items from within VSTM representations involves spatially specific biasing of neural activity in a manner analogous to that which occurs during visual search for target items in perceptual arrays. The results, replicated across the two experiments, revealed that selection of a target object within a search array maintained in VSTM proceeds through a similar mechanism as that in the perceptual domain. In line with previous results, N2pc potentials were obtained when targets were identified within a perceptual visual-search array. Interestingly, equivalent N2pcs, with similar time courses and scalp distributions, were also elicited when target items were identified within a VSTM representation. The findings reinforce the notion of highly flexible VSTM representations that can be modulated according to task goals and suggest a large degree of overlap in the spatially specific neural mechanisms of target selection across the perceptual and VSTM domains.


Assuntos
Potenciais Evocados/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adulto , Atenção/fisiologia , Percepção de Cores/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
18.
Neuroimage ; 51(2): 859-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20302948

RESUMO

Attention can be focused voluntarily and effectively on spatial locations in order to enhance the processing of task-relevant events. However, work on 'attentional capture' has demonstrated that spatial biases can be temporarily reset by transient and salient stimuli, especially if they share defining characteristics with the targets of a task goal. In the current study, we investigated whether the appearance of stimuli containing task-defining features at an unattended location was sufficient to capture attention, even when these were not perceptually salient. We used event-related-potential (ERP) markers to test whether the selection of task-defining features was modulated by top-down spatial attention, and to test whether the appearance of 'unattended targets' transiently disrupted the spatial bias. Surprisingly, the results revealed that ERP markers of selection of task-defining features were equivalent for stimuli appearing at spatially attended and unattended locations. In addition, the presentation of task-defining stimuli at the spatially unattended location induced a short-lived redistribution of the pre-established spatial attention bias toward the 'capture' side. These findings show that task-defining features of a stimulus are automatically processed independently from spatial attention, and suggest the co-existence of multiple sources of top-down biasing signals, which might in part sustain the capture mechanism.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
19.
Sci Rep ; 9(1): 19446, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857651

RESUMO

Music is organised both spectrally and temporally, determining musical structures such as musical scale, harmony, and sequential rules in chord progressions. A number of human neuroimaging studies investigated neural processes associated with emotional responses to music investigating the influence of musical valence (pleasantness/unpleasantness) comparing the response to music and unpleasantly manipulated counterparts where harmony and sequential rules were varied. Interactions between the previously applied alterations to harmony and sequential rules of the music in terms of emotional experience and corresponding neural activities have not been systematically studied although such interactions are at the core of how music affects the listener. The current study investigates the interaction between such alterations in harmony and sequential rules by using data sets from two functional magnetic resonance imaging (fMRI) experiments. While replicating the previous findings, we found a significant interaction between the spectral and temporal alterations in the fronto-limbic system, including the ventromedial prefrontal cortex (vmPFC), nucleus accumbens, caudate nucleus, and putamen. We further revealed that the functional connectivity between the vmPFC and the right inferior frontal gyrus (IFG) was reduced when listening to excerpts with alterations in both domains compared to the original music. As it has been suggested that the vmPFC operates as a pivotal point that mediates between the limbic system and the frontal cortex in reward-related processing, we propose that this fronto-limbic interaction might be related to the involvement of cognitive processes in the emotional appreciation of music.


Assuntos
Percepção Auditiva/fisiologia , Emoções/fisiologia , Estética/psicologia , Música/psicologia , Adulto , Mapeamento Encefálico , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Adulto Jovem
20.
Sci Rep ; 8(1): 9178, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907835

RESUMO

Mirror Activity (MA) describes involuntarily occurring muscular activity in contralateral homologous limbs during unilateral movements. This phenomenon has not only been reported in patients with neurological disorders (i.e. Mirror Movements) but has also been observed in healthy adults referred to as physiological Mirror Activity (pMA). However, despite recent hypotheses, the underlying neural mechanisms and structural correlates of pMA still remain insufficiently described. We investigated the structural correlates of pMA during isometric contractions of hand muscles with increasing force demands on a whole-brain level by means of voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). We found significant negative correlations between individual tendencies to display pMA and grey matter volume (GMV) in the right anterior cingulate cortex (ACC) as well as fractional anisotropy (FA) of white matter (WM) tracts of left precuneus (PrC) during left (non-dominant) hand contractions. No significant structural associations for contractions of the right hand were found. Here we extend previously reported functional associations between ACC/PrC and the inhibtion of intrinsically favoured mirror-symmetrical movement tendencies to an underlying structural level. We provide novel evidence that the individual structural state of higher order motor/executive areas upstream of primary/secondary motor areas might contribute to the phenomen of pMA.


Assuntos
Substância Cinzenta/fisiologia , Giro do Cíngulo/fisiologia , Força da Mão , Mãos/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Adulto , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA