RESUMO
The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3' overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.
Assuntos
Aedes/imunologia , Aedes/virologia , Infecções por Alphavirus/imunologia , Ribonuclease III/imunologia , Aedes/genética , Animais , Análise Mutacional de DNA , Mosquitos Vetores/virologia , RNA Interferente Pequeno/imunologia , RNA Viral/imunologia , Ribonuclease III/genética , Vírus da Floresta de SemlikiRESUMO
As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.
Assuntos
Pestivirus , Vírus , Infecção por Zika virus , Zika virus , Animais , Evolução Molecular , Genoma Viral , Humanos , Pestivirus/genética , Filogenia , Musaranhos/genética , Vírus/genética , Zika virus/genéticaRESUMO
Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.
Assuntos
Organismos Aquáticos , Infecções por Flavivirus , Flavivirus , Animais , Aquicultura , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/virologia , Evolução Biológica , Peixes/virologia , Flavivirus/isolamento & purificação , Infecções por Flavivirus/virologia , HumanosRESUMO
Originating from African forests, Zika virus (ZIKV) has now emerged worldwide in urbanized areas, mainly transmitted by Aedes aegypti mosquitoes. Although Aedes albopictus can transmit ZIKV experimentally and was suspected to be a ZIKV vector in Central Africa, the potential of this species to sustain virus transmission was yet to be uncovered until the end of 2019, when several autochthonous transmissions of the virus vectored by Ae. albopictus occurred in France. Aside from these few locally acquired ZIKV infections, most territories colonized by Ae. albopictus have been spared so far. The risk level of ZIKV emergence in these areas remains however an open question. To assess Ae. albopictus' vector potential for ZIKV and identify key virus outbreak predictors, we built a complete framework using the complementary combination of (i) dose-dependent experimental Ae. albopictus exposure to ZIKV followed by time-dependent assessment of infection and systemic infection rates, (ii) modeling of intra-human ZIKV viremia dynamics, and (iii) in silico epidemiological simulations using an Agent-Based Model. The highest risk of transmission occurred during the pre-symptomatic stage of the disease, at the peak of viremia. At this dose, mosquito infection probability was estimated to be 20%, and 21 days were required to reach the median systemic infection rates. Mosquito population origin, either temperate or tropical, had no impact on infection rates or intra-host virus dynamic. Despite these unfavorable characteristics for transmission, Ae. albopictus was still able to trigger and yield large outbreaks in a simulated environment in the presence of sufficiently high mosquito biting rates. Our results reveal a low but existing epidemic potential of Ae. albopictus for ZIKV, that might explain the absence of large scale ZIKV epidemics so far in territories occupied only by Ae. albopictus. They nevertheless support active surveillance and eradication programs in these territories to maintain the risk of emergence to a low level.
Assuntos
Mosquitos Vetores/metabolismo , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Aedes/metabolismo , Aedes/virologia , Animais , Surtos de Doenças , Vetores de Doenças , Epidemias , Humanos , Modelos Teóricos , Saliva/virologia , Carga Viral , Viremia/transmissão , Zika virus/patogenicidade , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologiaRESUMO
During 2015-2016, Cape Verde, an island nation off the coast of West Africa, experienced a Zika virus (ZIKV) outbreak involving 7,580 suspected Zika cases and 18 microcephaly cases. Analysis of the complete genomes of 3 ZIKV isolates from the outbreak indicated the strain was of the Asian (not African) lineage. The Cape Verde ZIKV sequences formed a distinct monophylogenetic group and possessed 1-2 (T659A, I756V) unique amino acid changes in the envelope protein. Phylogeographic and serologic evidence support earlier introduction of this lineage into Cape Verde, possibly from northeast Brazil, between June 2014 and August 2015, suggesting cryptic circulation of the virus before the initial wave of cases were detected in October 2015. These findings underscore the utility of genomic-scale epidemiology for outbreak investigations.
Assuntos
Microcefalia , Infecção por Zika virus , Zika virus , África Ocidental , Brasil/epidemiologia , Cabo Verde , Surtos de Doenças , Genômica , Humanos , Microcefalia/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologiaRESUMO
Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses.IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.
Assuntos
Flavivirus/metabolismo , Mosquitos Vetores/virologia , Interferência Viral/fisiologia , Aedes/virologia , Animais , Arbovírus/metabolismo , Linhagem Celular , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/metabolismo , Flavivirus/genética , Flavivirus/isolamento & purificação , Humanos , Vírus de Insetos , Filogenia , Replicação Viral/fisiologia , Zika virus/isolamento & purificação , Zika virus/metabolismo , Infecção por Zika virus/virologiaRESUMO
The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation in transmission kinetics among arbovirus strains, are poorly documented empirically and are rarely considered in epidemiological models. Here, we combine newly generated empirical measurements in vivo and outbreak simulations in silico to assess the epidemiological significance of genetic variation in dengue virus (DENV) transmission kinetics by Aedes aegypti mosquitoes. We found significant variation in the dynamics of systemic mosquito infection, a proxy for EIP, among eight field-derived DENV isolates representing the worldwide diversity of recently circulating type 1 strains. Using a stochastic agent-based model to compute time-dependent individual transmission probabilities, we predict that the observed variation in systemic mosquito infection kinetics may drive significant differences in the probability of dengue outbreak and the number of human infections. Our results demonstrate that infection dynamics in mosquitoes vary among wild-type DENV isolates and that this variation potentially affects the risk and magnitude of dengue outbreaks. Our quantitative assessment of DENV genetic variation in transmission kinetics contributes to improve our understanding of heterogeneities in arbovirus epidemiological dynamics.
Assuntos
Culicidae/virologia , Vírus da Dengue/genética , Dengue/genética , Dengue/transmissão , Mosquitos Vetores/virologia , Animais , Variação GenéticaRESUMO
The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.
Assuntos
Culex , Densovirus , Wolbachia , Animais , Culex/genética , Densovirus/genética , Filogenia , Prevalência , Carga Viral , Wolbachia/genéticaRESUMO
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.
Assuntos
Aedes/virologia , Vírus da Dengue/genética , Dengue/transmissão , Deriva Genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Aedes/genética , Animais , Sequência de Bases , Dengue/virologia , Evolução Molecular , Feminino , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/genética , Masculino , RNA Viral/genética , Análise de Sequência de RNA , Replicação ViralRESUMO
Vertical transmission (VT) and horizontal transmission (HT) of pathogens refer to parental and non-parental chains of host-to-host transmission. Combining HT with VT enlarges considerably the range of ecological conditions in which a pathogen can persist, but the factors governing the relative frequency of each transmission mode are poorly understood for pathogens with mixed-mode transmission. Elucidating these factors is particularly important for understanding the epidemiology of arthropod-borne viruses (arboviruses) of public health significance. Arboviruses are primarily maintained by HT between arthropod vectors and vertebrate hosts in nature, but are occasionally transmitted vertically in the vector population from an infected female to her offspring, which is a proposed maintenance mechanism during adverse conditions for HT. Here, we review over a century of published primary literature on natural and experimental VT, which we previously assembled into large databases, to identify biological factors associated with the efficiency of arbovirus VT in mosquito vectors. Using a robust statistical framework, we highlight a suite of environmental, taxonomic, and physiological predictors of arbovirus VT. These novel insights contribute to refine our understanding of strategies employed by arboviruses to persist in the environment and cause substantial public health concern. They also provide hypotheses on the biological processes underlying the relative VT frequency for pathogens with mixed-mode transmission that can be tested empirically.
Assuntos
Infecções por Arbovirus/transmissão , Culicidae/virologia , Transmissão Vertical de Doenças Infecciosas , Mosquitos Vetores/virologia , Animais , Arbovírus , HumanosRESUMO
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
RESUMO
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
RESUMO
Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.
RESUMO
OBJECTIVES: The origin and spread of dengue virus (DENV) circulating in Africa remain poorly characterized, with African sequences representing <1% of global sequence data. METHODS: Whole genome sequencing was performed on serum samples (n = 29) from an undifferentiated fever study in 2016 in the Democratic Republic of Congo (DRC), and from febrile travelers returning from Africa. The evolutionary history of the newly acquired African DENV-1 (n = 1) and cosmopolitan genotype DENV-2 (n = 18) genomes was reconstructed using a phylogeographic, time-scaled Bayesian analysis on a curated DENV panel including all known African sequences. RESULTS: A minimum of 10 and eight introductions could be identified into Africa for DENV-1 and cosmopolitan DENV-2, respectively, almost all originating from Asia. Three introductions were previously unknown. The currently circulating virus comprises mainly the recently introduced clades and one long-established African clade. Robust geographical clustering suggests limited spread of DENV after each introduction. Our data identified the DRC as the source of the 2018 Angolan DENV-2 epidemic, and similarly, the 2013 Angolan DENV-1 outbreak as the origin of our DRC study. CONCLUSION: Active genomic surveillance of DENV in Africa at the portals of entry might help early outbreak response and limit sero- and genotype spread and human disease burden.
Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Sorogrupo , Filogenia , Teorema de Bayes , África/epidemiologia , Genótipo , Surtos de Doenças , Febre/epidemiologiaRESUMO
Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus-host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus-host interactions.
Assuntos
Haloferax , Archaea , Vírus de DNA , Genômica , Haloferax/genética , Especificidade de HospedeiroRESUMO
Host-pathogen interactions impose recurrent selective pressures that lead to constant adaptation and counter-adaptation in both competing species. Here, we sought to study this evolutionary arms-race and assessed the impact of the innate immune system on viral population diversity and evolution, using Drosophila melanogaster as model host and its natural pathogen Drosophila C virus (DCV). We isogenized eight fly genotypes generating animals defective for RNAi, Imd and Toll innate immune pathways as well as pathogen-sensing and gut renewal pathways. Wild-type or mutant flies were then orally infected with DCV and the virus was serially passaged ten times via reinfection in naive flies. Viral population diversity was studied after each viral passage by high-throughput sequencing and infection phenotypes were assessed at the beginning and at the end of the evolution experiment. We found that the absence of any of the various immune pathways studied increased viral genetic diversity while attenuating virulence. Strikingly, these effects were observed in a range of host factors described as having mainly antiviral or antibacterial functions. Together, our results indicate that the innate immune system as a whole and not specific antiviral defence pathways in isolation, generally constrains viral diversity and evolution.
Assuntos
Proteínas de Drosophila , Vírus de RNA , Animais , Antivirais/metabolismo , Dicistroviridae , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Imunidade Inata , Vírus de RNA/metabolismoRESUMO
The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Genoma Viral/genética , Genômica , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Influenza Humana/genéticaRESUMO
Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3-4 replacement in 2005-2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT-PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.
Assuntos
Aedes/virologia , Vírus da Dengue/genética , Dengue/virologia , Mosquitos Vetores/virologia , Seleção Genética , Animais , Camboja/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue/fisiologia , Surtos de Doenças , Aptidão Genética , Genótipo , Humanos , Nova Caledônia/epidemiologia , Filogenia , Saliva/virologiaRESUMO
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.