Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 11(4): 591-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19538397

RESUMO

Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5-12 per thousand more depleted in (13)C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in (13)C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in (13)C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.


Assuntos
Acetaldeído/metabolismo , Isótopos de Carbono/análise , Hipóxia Celular/fisiologia , Folhas de Planta/metabolismo , Estresse Mecânico , Acetaldeído/análise , Populus/metabolismo
2.
Plant Physiol ; 115(4): 1413-1420, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12223874

RESUMO

Isoprene-emitting plants lose a large portion of their assimilated C as isoprene. Because isoprene synthesis can be regulated, it has been assumed that isoprene benefits the plant. Since the rate of isoprene emission from leaves is highly responsive to temperature, we hypothesized that isoprene benefits plants by increasing their thermotolerance. We used three methods to measure isopreneinduced thermotolerance in leaves. Each technique assayed thermotolerance under conditions that suppressed endogenous isoprene synthesis. When measured by chlorophyll fluorescence, thermotolerance of kudzu (Pueraria lobata [Willd.] Ohwi.) leaves increased as much as 4[deg]C in very low light. With higher light, isoprene increased thermotolerance of kudzu leaves by as much as 10[deg]C. When measured as the temperature at which photosynthesis declined to zero, thermotolerance increased with added isoprene by 2.5[deg]C. All three measures of thermotolerance were dose dependent. Both fluorescence techniques also showed isoprene-induced thermotolerance in white oak (Quercus alba L.). Thermotolerance was not observed in bean (Phaseolus vulgaris var Linden), a species that does not emit isoprene. None of the experiments was designed to determine the mechanism of thermotolerance, but we theorize that isoprene functions by enhancing hydrophobic interactions in membranes.

3.
Am J Bot ; 87(3): 412-7, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10719002

RESUMO

Theoretical considerations have suggested that there may be differences in photosynthetic nitrogen use efficiency (PNUE) among plants that use different biochemical variants of C(4) photosynthesis. To test this hypothesis we examined the leaf nitrogen content and photosynthetic rates of six grass species (three of C(4) subtype NAD-ME and three of C(4) subtype NADP-ME) grown over a wide range of nitrogen supply. While there were significant differences among the species in various traits, there were no consistent differences between the C(4) subtypes in either leaf nitrogen content at a given level of nitrogen supply or in the leaf nitrogen-photosynthesis relationship. We suggest that species-level variation in photosynthetic nitrogen use efficiency among C(4) species is large enough to mask any differences that may be due to C(4) subtype.

4.
Trends Ecol Evol ; 9(2): 58-61, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21236767

RESUMO

Recent studies of allocation to defensive chemicals in plants have provided insights into the ecological controls over plant defensive chemicals. Both developmental and ecological studies now suggest that we can understand the factors influencing allocation to defense by examining the relative availability of resources, external needs for chemical defense, and the internal demands for growth that plants face. These studies have also shed light on one of the more popular theories in plant evolutionary ecology, the growth-differentiation balance hypothesis of plant resource allocation.

5.
Trends Ecol Evol ; 10(1): 39, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21236949
6.
Trends Ecol Evol ; 6(7): 201-2, 1991 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21232456
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA