Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765560

RESUMO

Regarding the dynamic development of 3D printing technology, as well as its application in a growing part of industries, i.e., in the automotive industry, construction industry, medical industry, etc., there is a notable opportunity for its application in producing dental implants, which presents a promising alternative to traditional implant manufacturing methods. The medical industry is very restrictive regarding the applied materials, and it is necessary to use materials that exhibit very good mechanical and thermal parameters, show clinical indifference and biocompatibility, are non-allergenic and non-cancerous, and are likely to sterilize. Such materials are poly(aryl-ether-ketone)s (PAEK)s, mainly poly(ether-ether-ketone) (PEEK) and poly(ether-ketone-ketone) (PEKK), that are found to be high-performance polymers and can be defined as materials that retain their functionality even in extreme conditions. In the present paper, two types of PEEKs and PEKK were compared regarding their structural, mechanical, and thermal properties along with the biological activity toward selected strains. The tested samples were obtained with Fused Deposition Modeling (FDM) technology. The PEKK, after heat treatment, exhibits the most promising mechanical properties as well as less bacterial adhesion on its surface when compared to both PEEKs. Consequently, among the evaluated materials, PEKK after heat treatment stands out as the optimal selection for a dental prosthesis.

2.
Polymers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080519

RESUMO

Cross-linked polyethylene (XLPE) is one of the most popular insulation materials used in the production of medium and high voltage cables (MV, HV). This article presents the results of research carried out on two types of commercially used insulation materials, modified with the addition of organophilic phyllosilicate (CLOISITE C20A)and halloysite nanotubes (HNTs). The influence of fillers on the mechanical properties of insulating materials is discussed as a potential mechanism for increasing their resistance to the phenomenon of water-tree. SEM and XRD analyses were performed to investigate the morphology and DSC for comparing phase transitions. Mechanical and functional properties for different concentrations of nanofillers, such as their hybrids, were also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA