Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 2): 159209, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206911

RESUMO

Concerns about impact of small plastic particles, known as microplastics (<5 mm) and nanoplastics (<1 µm), together abbreviated as MNP, on the environment and on human health have increased in recent years. Polyethylene terephthalate (PET) microplastics have been detected previously in different environmental samples including freshwater and wastewater sludge. In the present study, we target all small plastic particles of PET with a diameter smaller than 5 mm ('PET MNP'). A simple three-step method of drying, (in matrix) PET depolymerization in ethylene glycol and liquid chromatography-mass spectrometry (LC-MS) analysis, was applied for the quantification of PET MNP in influents and effluents collected from ten Dutch wastewater treatment plants. The PET recovery was 98 % in the wastewater matrix. The limits of detection (LOD) for PET in influents and effluents were 2.0 µg/L and 1.2 µg/L, respectively. PET MNP was detected in all the influents (ranging from 24.9 µg/L to 680 µg/L) and most of the effluents (ranging from

Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Águas Residuárias/química , Microplásticos , Plásticos , Polietilenotereftalatos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Mar Pollut Bull ; 175: 113403, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35151075

RESUMO

An effective 3-step method for the quantification of mass of polyethylene terephthalate microplastics and nanoplastics (PET MNPs) in complex environmental matrices was developed based on a simplified in-matrix depolymerization. Liquid chromatography (LC) coupled with ultraviolet (UV) detection was used for detection and quantification. Recoveries for PET-spiked sand samples were 99 ± 2% (1 mg/L) and 93 ± 7% (30 mg/L). The limit of quantification (LOQ) for PET was 0.4 µg/g for sand, 1 mg/g for indoor dust and 0.2 µg/g for wet sludge. This method was applied to seven beach sand samples, 20 indoor dust samples and one sewage sludge sample. PET MNPs levels in sand samples were all below the limit of detection (LOD) of LC-UV (0.1 µg/g). The concentrations of PET MNPs in indoor dust samples ranged from 1.2 to 305 mg/g and the PET MNPs in liquid sludge was 1.5 mg/L.


Assuntos
Microplásticos , Esgotos , Poeira/análise , Plásticos , Polietilenotereftalatos , Areia , Esgotos/análise
3.
Environ Int ; 163: 107199, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367073

RESUMO

Plastic particles are ubiquitous pollutants in the living environment and food chain but no study to date has reported on the internal exposure of plastic particles in human blood. This study's goal was to develop a robust and sensitive sampling and analytical method with double shot pyrolysis - gas chromatography/mass spectrometry and apply it to measure plastic particles ≥700 nm in human whole blood from 22 healthy volunteers. Four high production volume polymers applied in plastic were identified and quantified for the first time in blood. Polyethylene terephthalate, polyethylene and polymers of styrene (a sum parameter of polystyrene, expanded polystyrene, acetonitrile butadiene styrene etc.) were the most widely encountered, followed by poly(methyl methacrylate). Polypropylene was analysed but values were under the limits of quantification. In this study of a small set of donors, the mean of the sum quantifiable concentration of plastic particles in blood was 1.6 µg/ml, showing a first measurement of the mass concentration of the polymeric component of plastic in human blood. This pioneering human biomonitoring study demonstrated that plastic particles are bioavailable for uptake into the human bloodstream. An understanding of the exposure of these substances in humans and the associated hazard of such exposure is needed to determine whether or not plastic particle exposure is a public health risk.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Humanos , Plásticos/análise , Polímeros , Poliestirenos/análise , Pirólise , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 50(13): 6825-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27331860
5.
Sci Total Environ ; 774: 145174, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609829

RESUMO

Concern on relatively high levels and the potential bioaccumulation of decabromodiphenylether (BDE209) has led to a European 8-year monitoring program on trends in BDE209 concentrations in birds, sewage sludge and sediments from seven countries. BDE209 was analysed in four environmental matrices: sparrowhawk eggs (UK), glaucous gull eggs (Bear Island, Norway), sewage sludge (UK, Ireland and the Netherlands) and sediment (France, Germany, the Netherlands, UK and Ireland). BDE209 was detected in most of the glaucous gull and sparrow hawk eggs but neither increasing nor decreasing trends in these BDE209 levels were observed. An indication for debromination of BDE209 in sparrowhawk eggs was found. BDE209 concentrations in sediments ranged from very low ng/g (88 ng/g on an organic carbon (OC) basis) concentrations, in the rivers Elbe, Ems, Seine and the Outer Humber, to high µg/g (120 µg/g OC), in the Western Scheldt, Liverpool Bay and River Mersey. Apart from decreasing values in the Western Scheldt sediment no further decreases in BDE209 concentrations were observed over time, neither in sediment nor in sewage sludge showing that the voluntary emissions control program of the bromine industry only had a local effect. In contrast to the sewage sludge samples from the Netherlands (mean 355 ng/g dry weight (dw) or 1026 ng/g OC), the BDE209 concentrations in the UK increased at all sites from 2006 to 2011 (8092 ng/g dw or 22,367 ng/g OC). The BDE209 levels in several UK sediments and sewage sludge were still very high at the end of the program in 2012, most likely caused by frequent use of BDE209 in the textile industry. This may be indicative of the persistence of BDE209 and the limited degradation into lower brominated congeners in sediment, although it cannot be excluded that ongoing BDE209 emissions have played a role as well.


Assuntos
Esgotos , Poluentes Químicos da Água , Animais , Aves , Monitoramento Ambiental , França , Sedimentos Geológicos , Alemanha , Irlanda , Países Baixos , Noruega , Esgotos/análise , Poluentes Químicos da Água/análise
6.
Reprod Toxicol ; 102: 109-127, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33992733

RESUMO

PCB 180 is a persistent and abundant non-dioxin-like PCB (NDL-PCB). We determined the developmental toxicity profile of ultrapure PCB 180 in developing offspring following in utero and lactational exposure with the focus on endocrine, metabolic and retinoid system alterations. Pregnant rats were given total doses of 0, 10, 30, 100, 300 or 1000 mg PCB 180/kg bw on gestational days 7-10 by oral gavage, and the offspring were sampled on postnatal days (PND) 7, 35 and 84. Decreased serum testosterone and triiodothyronine concentrations on PND 84, altered liver retinoid levels, increased liver weights and induced 7-pentoxyresorufin O-dealkylase (PROD) activity were the sensitive effects used for margin of exposure (MoE) calculations. Liver weights were increased together with induction of the metabolizing enzymes cytochrome P450 (CYP) 2B1, CYP3A1, and CYP1A1. Less sensitive effects included decreased serum estradiol and increased luteinizing hormone levels in females, decreased prostate and seminal vesicle weight and increased pituitary weight in males, increased cortical bone area and thickness of tibial diaphysis in females and decreased cortical bone mineral density in males. Developmental toxicity profiles were partly different in male and female offspring, males being more sensitive to increased liver weight, PROD induction and decreased thyroxine concentrations. MoE assessment indicated that the 95th percentile of current maternal PCB 180 concentrations do not exceed the estimated tolerable human lipid-based PCB 180 concentration. Although PCB 180 is much less potent than dioxin-like compounds, it shares several toxicological targets suggesting a potential for interactions.


Assuntos
Carcinógenos/toxicidade , Bifenilos Policlorados/toxicidade , Animais , Dioxinas , Feminino , Seguimentos , Lactação , Fígado/efeitos dos fármacos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Retinoides
7.
Sci Rep ; 10(1): 10945, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616793

RESUMO

We studied the fragmentation of conventional thermoplastic and compostable plastic items in a laboratory seawater microcosm. In the microcosm, polyurethane foams, cellulose acetate cigarette filters, and compostable polyester and polylactic acid items readily sank, whereas polyethylene air pouches, latex balloons, polystyrene foams and polypropylene cups remained afloat. Microbial biofilms dominated by Cyanobacteria, Proteobacteria, Planctomycetes and Bacteriodetes grew on the plastics, and caused some of the polyethylene items to sink to the bottom. Electrical resistances (ER) of plastic items decreased as function of time, an indication that seawater had penetrated into microscopic crevices in the plastic that had developed over time. Rate constants for ER decrease in polyethylene items in the microcosm were similar to tensile elongation decrease of polyethylene sheets floating in sea, measured previously by others. Weight loss of plastic items was ≤ 1% per year for polyethylene, polystyrene and polypropylene, 3-5% for latex, polyethylene terephthalate and polyurethane, 15% for cellulose acetate, and 7-27% for polyester and polylactic acid compostable bags. The formation of microplastics observed in the microcosm was responsible for at least part of the weight loss. This study emphasizes the need to obtain experimental data on plastic litter degradation under conditions that are realistic for marine environments.

8.
J Biophotonics ; 13(5): e201960197, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32049417

RESUMO

Millions of women worldwide have silicone breast implants. It has been reported that implant failure occurs in approximately a tenth of patients within 10 years, and the consequences of dissemination of silicone debris are poorly understood. Currently, silicone detection in histopathological slides is based on morphological features as no specific immunohistochemical technique is available. Here, we show the feasibility and sensitivity of stimulated Raman scattering (SRS) imaging to specifically detect silicone material in stained histopathological slides, without additional sample treatment. Histology slides of four periprosthetic capsules from different implant types were obtained after explantation, as well as an enlarged axillary lymph node from a patient with a ruptured implant. SRS images coregistered with bright-field images revealed the distribution and quantity of silicone material in the tissue. Fast and high-resolution imaging of histology slides with molecular specificity using SRS provides an opportunity to investigate the role of silicone debris in the pathophysiology of implant-linked diseases.


Assuntos
Implantes de Mama , Diagnóstico por Imagem , Feminino , Humanos , Linfonodos , Silicones , Análise Espectral Raman
9.
Sci Total Environ ; 651(Pt 2): 3253-3268, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463173

RESUMO

Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations' Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.


Assuntos
Substâncias Perigosas , Plásticos , Embalagem de Produtos/estatística & dados numéricos , Embalagem de Produtos/legislação & jurisprudência , Reciclagem
10.
Mar Pollut Bull ; 135: 17-29, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301027

RESUMO

Marine and coastal ecosystems are among the largest contributors to the Earth's productivity. Experimental studies have shown negative impacts of microplastics on individual algae or zooplankton organisms. Consequently, primary and secondary productivity may be negatively affected as well. In this study we attempted to estimate the impacts on productivity at ecosystem level based on reported laboratory findings with a modelling approach, using our biogeochemical model for the North Sea (Delft3D-GEM). Although the model predicted that microplastics do not affect the total primary or secondary production of the North Sea as a whole, the spatial patterns of secondary production were altered, showing local changes of ±10%. However, relevant field data on microplastics are scarce, and strong assumptions were required to include the plastic concentrations and their impacts under field conditions into the model. These assumptions reveal the main knowledge gaps that have to be resolved to improve the first estimate above.


Assuntos
Ecossistema , Ecotoxicologia/métodos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Meio Ambiente , Modelos Teóricos , Mar do Norte , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Plásticos/análise , Poluentes Químicos da Água/análise , Zooplâncton/efeitos dos fármacos , Zooplâncton/crescimento & desenvolvimento
11.
Chemosphere ; 186: 10-16, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28759812

RESUMO

Plastic debris acts as a sorbent phase for hydrophobic organic compounds like polychlorinated biphenyls (PCBs). Chemical partitioning models predict that the ingestion of microplastics with adsorbed chemicals in the field will tend not to result in significant net desorption of the chemical to the organism's tissues. This is expected due to the often limited differences in fugacity of the chemical between the indigestible plastic materials and the tissues, which are typically already exposed in the same environment to the same chemicals as the plastic. However laboratory trials validating these model predictions are scarce. In this study, PCB-loaded microplastics were offered to field-collected Norway lobsters (Nephrops norvegicus) during in vivo feeding laboratory experiments. Each ingestion experiment was repeated with and without loading a mixture of ten PCB congeners onto plastic microspheres (MS) made of polyethylene (PE) and polystyrene (PS) with diameters of either 500-600 µm or 6 µm. We observed that the presence of chemicals adsorbed to ingested microplastics did not lead to significant bioaccumulation of the chemicals in the exposed organisms. There was a limited uptake of PCBs in Nephrops tail tissue after ingestion of PCB-loaded PE MS, while almost no PCBs were detected in animals exposed to PS MS. In general, our results demonstrated that after 3 weeks of exposure the ingestion of plastic MS themselves did not affect the nutritional state of wild Nephrops.


Assuntos
Nephropidae/metabolismo , Plásticos , Bifenilos Policlorados/farmacocinética , Adsorção , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Microesferas , Noruega , Polietileno , Poliestirenos , Resíduos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
12.
Mar Pollut Bull ; 122(1-2): 403-408, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28689849

RESUMO

Measurements of microplastics in biota and abiotic matrices are key elements of exposure and risk assessments for this emerging environmental pollutant. We investigated the abundance of microplastics in field-collected biota, sediment and water. An improved sediment extraction method, based on density separation was developed. For analysis of microplastics in biota we found that an adapted enzymatic digestion protocol using proteinase K performed best, with a 97% recovery of spiked plastic particles and no observed degradation effects on the plastics in subsequent Raman analysis. Field analysis revealed that 8 of 9 tested invertebrate species from the North Sea and 68% of analyzed individuals of brown trout (Salmo trutta) from the Swedish West Coast had microplastics in them. Based on the number of plastic particles per kg d.w. the microplastic concentrations found in mussels were approximately a thousand-fold higher compared to those in sediment and surface water samples from the same location.


Assuntos
Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Invertebrados , Mar do Norte , Água
14.
Environ Int ; 107: 16-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28651164

RESUMO

To determine possible effects of lifestyle, diet, housing and professional activities on differences in individual levels of decabromodiphenyl ether (BDE-209) in serum of women, 20 to 40years of age, in The Netherlands, the United Kingdom, Norway and Spain. BDE-209 was measured in serum of 145 female volunteers with no known occupational exposure from Norway, United Kingdom, The Netherlands and Spain. Blood levels of BDE-209 in a subgroup of 40 Dutch women were determined twice at a six months' interval. An extensive questionnaire was used to obtain detailed information about lifestyle factors that might contribute to BDE-209 exposure. Serum levels were used to determine margin of systemic exposure compared with a 28d rat toxicity study. Median BDE-209 serum concentrations were highest in The Netherlands and United Kingdom, respectively 8.8 and 9.3pg/gww. or 2.6 and 2.8ng/g lipid. Median levels in Spain and Norway were lower, respectively 7.4 and 5.2pg/gww. or 3.3 and 0.8ng/g lipid. Maximum levels in individual women were higher by one order of magnitude than the mean or median. The country of residence was the only variable significantly associated with BDE-209 levels; we found that the differences between countries could not be explained by any of the investigated exposure variables, and that these did not explain differences between individuals either. No consistent relationships were determined between diets, household, clothes, number and duration of use of electronics and occupational activities for the whole study group. We could not identify which of the multiple sources of exposure accounted for individual differences in blood levels. Although small differences in mean BDE-209 serum levels were recognized between countries, these differences are unlikely to cause a differential result with respect to risk assessment.


Assuntos
Poluentes Ambientais/sangue , Retardadores de Chama/análise , Éteres Difenil Halogenados/sangue , Adulto , Animais , Dieta , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Estilo de Vida , Ratos , Medição de Risco , Adulto Jovem
15.
Aquat Toxicol ; 170: 259-261, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26675372

RESUMO

The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6µm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.


Assuntos
Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Plásticos/toxicidade , Tamanho da Partícula , Poliestirenos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 505: 22-31, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25306092

RESUMO

Nine organophosphorus flame retardants (PFRs) were detected in a pelagic and benthic food web of the Western Scheldt estuary, The Netherlands. Concentrations of several PFRs were an order of magnitude higher than those of the brominated flame retardants (BFRs). However, the detection frequency of the PFRs (6-56%) was lower than that of the BFRs (50-97%). Tris(2-butoxyethyl) phosphate (TBOEP), tris(isobutyl) phosphate (TIBP) and tris(2-chloroisopropyl) phosphate (TCIPP) were the dominant PFRs in sediment with median concentrations of 7.0, 8.1 and 1.8 ng/g dry weight (dw), respectively. PFR levels in the suspended particular matter (SPM) were 2-12 times higher than that in sediment. TBOEP, TCIPP, TIBP, tris(2-chloroethyl) phosphate (TCEP) and tris(phenyl) phosphate (TPHP) were found in organisms higher in the estuarine food web. The highest PFR concentrations in the benthic food web were found in sculpin, goby and lugworm with median concentrations of 17, 7.4, 4.6 and 2.0 ng/g wet weight (ww) for TBOEP, TIBP, TCIPP and TPHP, respectively. Comparable levels were observed in the pelagic food web, BDE209 was the predominant PBDE in sediment and SPM with median concentrations up to 9.7 and 385 ng/g dw, respectively. BDE47 was predominant in the biotic compartment of the food web with highest median levels observed in sculpin and common tern eggs of 79 ng/g lipid weight (lw) (2.5 ng/g ww) and 80 ng/g lw (11 ng/g ww), respectively. Trophic magnification was observed for all PBDEs with the exception of BDE209. Indications of trophic magnification of PFRs were observed in the benthic food web for TBOEP, TCIPP and TCEP with tentative trophic magnification factors of 3.5, 2.2 and 2.6, respectively (p<0.05). Most of the other PFRs showed trophic dilution in both food webs. The relative high PFR levels in several fish species suggest high emissions and substantial exposure of organisms to PFRs in the Western Scheldt.


Assuntos
Retardadores de Chama/análise , Cadeia Alimentar , Compostos Organofosforados/análise , Plastificantes/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Estuários , Éteres Difenil Halogenados/análise , Países Baixos
17.
Rev Environ Contam Toxicol ; 173: 39-83, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11776750

RESUMO

Heterocyclic compounds by far outnumber the homocyclic PAHs. In addition, they are often more soluble in water, which may imply a greater biological significance of these heterocycles. Yet, most research focuses on the homocyclics, based on the implicit assumption that the mostly higher concentration of the homocyclics rank these compounds as priority compounds. This review critically examines the available evidence and poses questions on the biological activity and environmental risk of one small group of heterocyclics, the azaarenes, which contain one nitrogen atom in one of the aromatic rings. In different sections, the biotransformation and different types of toxicity are discussed in comparison to those of homocyclic PAHs. The last section focuses on the implications for risk assessment of PAHs. Two- and three-ringed azaarenes can be relatively easily transformed by bacteria, fungi, invertebrates, and vertebrates. The presence of the N-moiety in the smaller azaarenes leads to metabolic routes that partly differ from those of the homoaromatic analogues. Major metabolic products of the azaarenes appear to be ketones and mono- or dihydroxylated azaarenes. Microorganisms can further degrade these into multiple oxygen-containing compounds or they can open up the aza-containing aromatic ring and fully metabolize the products. Fungi and vertebrates were shown to produce the mutagenic dihydrodiol metabolites. The metabolism of the larger azaarenes in vertebrates proceeds analogous to homoaromatic PAH, because in these larger molecules the N-moiety has less influence. Transformation of the larger azaarenes by microorganisms proceeds much slower if occurring at all. Direct toxicity data of azaarenes are mostly restricted to the effects of acridine and quinoline on a relatively small number of species. From this limited set it becomes clear that differences between species are relatively small. As with homocyclic PAHs, toxicity generally increases with increasing number of rings, and baseline toxicity models based on homocyclic PAHs do apply. Toxicity differences between isomers indicate that azaarene toxicity cannot be explained by molecular size-related parameters alone, indicating that electronic forces may be important as well. Considering chronic toxicity it becomes clear that the often-used acute-to-chronic-ratios often underestimate specific chronic toxicity, even within the very limited set of chronic data available. In contrast with homocyclic PAHs, photodegradation of azaarenes shows the same degradation products as biological transformation involving monooxygenases. In general, as for homocyclic PAHs, the degree of phototoxicity is related to the UV absorption characteristics of the azaarenes, which makes it possible to apply the QSAR models developed for homocyclic PAHs to azaarenes as well. Recent research on algae showed that UV-A is the main cause of photoenhanced toxicity. Together with the fact that in the water column UV-B is almost absent, this clearly demonstrates the relevance of phototoxicity in the field. Mutagenicity of azaarenes generally proceeds through similar pathways as in homocyclic PAHs, with bay region diol epoxides as major genotoxic metabolites. The N-moiety can, however, result in differences in genotoxic activities between isomers. Carcinogenicity of azaarenes in mammals is generally restricted to four-ringed and larger structures, and mechanisms leading to cancer are similar to those of homocyclic aromatics. An exception to this general pattern is quinoline, which has been shown to induce liver cancer. The present risk assessment for PAHs is solely based on homocyclic PAHs. Yet, from the present review it becomes clear that this approach fails to protect against a vast number of heterocyclic compounds and biotransformation products that may exhibit stronger or other toxic effects than their homocyclic analogues. Therefore, incorporating the role of heterocyclic compounds and their metabolism appears to be a necessity for a reliable risk assessment for polycyclic aromatic compounds. In addition, reliable long-term protection against PAHs demands data on chronic toxicity, including teratogenicity, both for homocyclic as for heterocyclic compounds.


Assuntos
Compostos Aza/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Eucariotos , Peixes , Água Doce , Humanos , Invertebrados , Dose Letal Mediana , Água do Mar , Relação Estrutura-Atividade
18.
Environ Toxicol Chem ; 23(8): 2022-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15352493

RESUMO

The use of internal concentrations as a dose parameter for baseline toxicity requires an understanding of the relationship between accumulation level and toxic effects, not only for acute but also for chronic exposure. In this study of chronic toxicity of the nonpolar narcotic 1,2,3,4-tetrachlorobenzene (TeCB) to Chironomus riparius, the chronic median lethal concentration (LC50) was determined to be 0.99 (0.54-1.82) microM, the median sublethal effect concentration (EC50) for growth was 0.76 (0.73-0.97) microM, and the chronic (sublethal) no-observed-effect concentration (NOEC) was 0.24 +/- 0.01 microM. An acute-to-chronic ratio of 9.8 was calculated from a previously determined acute LC50 value and this NOEC. The chronic critical body residue (CBR), 136 mmol/kg lipid, was the same as the acute CBR, previously determined. The similarity of the chronic and acute CBRs lends support to the exposure time independent aspect of baseline toxicity theory. An implication of this is that internal concentrations estimated by biomimetic sampling devices may be compared to acute CBR data to determine chronic baseline toxicity risk. Such sampling devices, solid-phase microextraction (SPME) fibers, were simultaneously exposed during the toxicity test. The results of this study suggest that body residues estimated with SPME may be used to predict baseline toxicity for various exposure durations.


Assuntos
Chironomidae , Clorobenzenos/farmacocinética , Clorobenzenos/toxicidade , Exposição Ambiental , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Dose Letal Mediana , Medição de Risco , Distribuição Tecidual
19.
Environ Toxicol Chem ; 23(8): 2017-21, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15352492

RESUMO

Body residues of compounds with a narcotic mode of action that exceed critical levels result in baseline toxicity in organisms. Previous studies have shown that internal concentrations in organisms also can be estimated by way of passive sampling. In this experiment, solid-phase microextraction (SPME) fibers were used as a tool to estimate the body residues, which were then compared to measured levels. Past application of SPME fibers in the assessment of toxicity risk of samples has focused on separate exposure of fibers and organisms, often necessitated by the amount of agitation needed in order to achieve steady state in the fibers within a convenient time period. Uptake kinetic studies have shown that in SPME fibers with thin coatings, equilibrium concentrations can be reached without agitation within the time frame of a toxicity test. In contrast to toxicity experiments to date, the SPME fibers in the current study were exposed concomitantly to the test water with the organisms, ensuring an exposure under the exact same conditions. Fibers and two aquatic invertebrate species were exposed to a mixture of four chlorobenzenes with a narcotic mode of action. The total body residue of these compounds in the organisms was determined, as was the acute toxicity resulting from the accumulation. The total body residues of both species were correlated to the total concentrations in SPME fibers. It was concluded that toxicity could be predicted based on total body residue (TBR) estimates from fiber concentrations.


Assuntos
Clorobenzenos/farmacocinética , Clorobenzenos/toxicidade , Animais , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Dípteros , Previsões , Larva , Oligoquetos , Valores de Referência , Reprodutibilidade dos Testes , Medição de Risco , Manejo de Espécimes , Distribuição Tecidual
20.
Environ Toxicol Chem ; 21(2): 229-34, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11837229

RESUMO

A biomimetic extraction technique using solid-phase microextraction (SPME) fibers has been developed for the risk assessment of contaminants with a narcotic mode of action. Our goal is to apply this technique in the future for the prediction of total baseline toxicity of environmental water and effluent samples. Validation of this method requires establishing the relationship between contaminant accumulation and toxicity in biota and accumulation in the surrogate solid phase (the SPME fiber coating). For this purpose, we determined the median lethal concentration (LC50) values for Chironomus riparius midge larvae exposed to two halogenated aromatic compounds separately and measured body residues in the exposed larvae. Solid-phase microextraction fibers with an 85-microm polyacrylate (PA) coating served as the surrogate hydrophobic phase, mimicking the uptake of the compounds by midge larvae. The toxicant concentrations in SPME fibers measured directly by gas chromatography/mass spectrometry (GC-MS) or calculated from the SPME fiber-water partition coefficient, K(SPME) were related to the toxicant concentrations found in midge larvae. Our results demonstrated that the biomimetic SPME method enables the estimation of body residues in biota and prediction of the degree of baseline toxicity of a water medium.


Assuntos
Hidrocarbonetos Aromáticos/farmacocinética , Hidrocarbonetos Aromáticos/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Carga Corporal (Radioterapia) , Técnicas de Química Analítica/métodos , Chironomidae , Previsões , Cromatografia Gasosa-Espectrometria de Massas , Halogênios/toxicidade , Larva , Dose Letal Mediana , Entorpecentes/toxicidade , Medição de Risco , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA