RESUMO
OBJECTIVE: Unmyelinated cutaneous axons are vulnerable to physical and metabolic injury, but also capable of rapid regeneration. This balance may help determine risk for peripheral neuropathy associated with diabetes or metabolic syndrome. Capsaicin application for 48 hours induces cutaneous fibers to die back into the dermis. Regrowth can be monitored by serial skin biopsies to determine intraepidermal nerve fiber density (IENFD). We used this capsaicin axotomy technique to examine the effects of exercise on cutaneous regenerative capacity in the setting of metabolic syndrome. METHODS: Baseline ankle IENFD and 30-day cutaneous regeneration after thigh capsaicin axotomy were compared for participants with type 2 diabetes (n = 35) or metabolic syndrome (n = 32) without symptoms or examination evidence of neuropathy. Thirty-six participants (17 with metabolic syndrome) then joined twice weekly observed exercise and lifestyle counseling. Axotomy regeneration was repeated in month 4 during this intervention. RESULTS: Baseline distal leg IENFD was significantly reduced for both metabolic syndrome and diabetic groups. With exercise, participants significantly improved exercise capacity and lower extremity power. Following exercise, 30-day reinnervation rate improved (0.051 ± 0.027 fibers/mm/day before vs 0.072 ± 0.030 after exercise, p = 0.002). Those who achieved improvement in more metabolic syndrome features experienced a greater degree of 30-day reinnervation (p < 0.012). INTERPRETATION: Metabolic syndrome was associated with reduced baseline IENFD and cutaneous regeneration capacity comparable to that seen in diabetes. Exercise-induced improvement in metabolic syndrome features increased cutaneous regenerative capacity. The results underscore the potential benefit to peripheral nerve function of a behavioral modification approach to metabolic improvement.
Assuntos
Terapia por Exercício/métodos , Doenças Metabólicas , Regeneração Nervosa/fisiologia , Dermatopatias/etiologia , Pele/inervação , Administração Cutânea , Biópsia , Capsaicina/uso terapêutico , Feminino , Humanos , Masculino , Doenças Metabólicas/complicações , Doenças Metabólicas/patologia , Doenças Metabólicas/reabilitação , Regeneração Nervosa/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Fatores de TempoRESUMO
BACKGROUND: We used in vivo corneal confocal microscopy to investigate structural differences in the sub-basal corneal nerve plexus in chronic migraine patients and a normal population. We used a validated questionnaire and tests of lacrimal function to determine the prevalence of dry eye in the same group of chronic migraine patients. Activation of the trigeminal system is involved in migraine. Corneal nociceptive sensation is mediated by trigeminal axons that synapse in the gasserian ganglion and the brainstem, and serve nociceptive, protective, and trophic functions. Noninvasive imaging of the corneal sub-basal nerve plexus is possible with in vivo corneal confocal microscopy. METHODS: For this case-control study, we recruited chronic migraine patients and compared them with a sex- and age-similar group of control subjects. Patients with peripheral neuropathy, a disease known to be associated with a peripheral neuropathy, or prior corneal or intraocular surgery were excluded. Participants underwent in vivo corneal confocal microscopy using a Heidelberg Retinal Tomography III confocal microscope with a Rostock Cornea Module. Nerve fiber length, nerve branch density, nerve fiber density, and tortuosity coefficient were measured using established methodologies. Migraine participants underwent testing of basal tear production with proparacaine, corneal sensitivity assessment with a cotton-tip applicator, measurement of tear break-up time, and completion of a validated dry eye questionnaire. RESULTS: A total of 19 chronic migraine patients and 30 control participants completed the study. There were no significant differences in age or sex. Nerve fiber density was significantly lower in migraine patients compared with controls (48.4 ± 23.5 vs. 71.0 ± 15.0 fibers/mm2 , P < .001). Nerve fiber length was decreased in the chronic migraine group compared with the control group, but this difference was not statistically significant (21.5 ± 11.8 vs. 26.8 ± 5.9 mm/mm2, P < .084). Nerve branch density was similar in the two groups (114.0 ± 92.4 vs. 118.1 ± 55.9 branches/mm2 , P < .864). Tortuosity coefficient and log tortuosity coefficient also were similar in the chronic migraine and control groups. All migraine subjects had symptoms consistent with a diagnosis of dry eye syndrome. CONCLUSIONS: We found that in the sample used in this study, the presence of structural changes in nociceptive corneal axons lends further support to the hypothesis that the trigeminal system plays a critical role in the pathogenesis of migraine. In vivo corneal confocal microscopy holds promise as a biomarker for future migraine research as well as for studies examining alterations of corneal innervation. Dry eye symptoms appear to be extremely prevalent in this population. The interrelationships between migraine, corneal nerve architecture, and dry eye will be the subject of future investigations.
Assuntos
Córnea/inervação , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/epidemiologia , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/epidemiologia , Fibras Nervosas Mielinizadas/patologia , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
The rate at which the coronavirus disease (COVID-19) spread required a rapid response across many, if not all, industries. Academic medical centers had to rapidly evaluate, prioritize, and coordinate the multiple requests for clinical trial participation. This involved redirecting resources and developing a collaborative system for assessment, decision making, and implementation. Our institution formed a team with diverse representation from multiple stakeholders to review and prioritize all research protocols related to COVID-19. To accomplish this, a prioritization matrix was developed to help determine the order in which the protocols should be placed for consideration by the treating clinician. The purpose of the team was to review the COVID-19 clinical trials in the pipeline, prioritize those trials that best met the needs of our patients, oversee training and resource needs, and lead the formulation of procedures for integration with clinical care. Resources from the Clinical Research Unit were then allocated to support the swift execution of such studies. This manuscript describes that process, the challenges encountered, and the lessons learned on how to make all clinical trials more successful in a complex and dynamic environment.